Twisted Spaces: Fiber Bundles

It’s been a while since I’ve written a topology post. Rest assured – there’s plenty more topology to come. For instance, today, I’m going to talk about something called a fiber bundle. I like to say that a fiber bundle is a cross between a product and a manifold. (There’s a bit of a geeky pun in there, but it’s too pathetic to explain.)

The idea of a fiber bundle is very similar to the idea of a manifold. Remember, a manifold is a topological space where every point is inside of a neighborhood that appears to be euclidean, but the space as a whole may be very non-euclidean. There are all sorts of interesting things that you can do in a manifold because of that property of being locally almost-euclidean – things like calculus.

A fiber bundle is based on a similar sort of idea: a local property that does not necessarily hold globally – but instead the local property being a property of individual points, it’s based on a property of regions of the space.

So what is a fiber bundle, and why should we care? It’s something that looks almost like a product of two topological spaces. The space can be divided into regions, each of which is a small piece of a product space – but the space as a whole may be twisted in all sorts of ways that would be impossible for a true product space.

Continue reading

Basics: Logic, aka "It's illogical to call Mr. Spock logical"

This is another great basics topic, and it’s also one of my pet peeves. In general, I’m a big science fiction fan, and I grew up in a house where every saturday at 6pm, we all gathered in front of the TV to watch Star Trek. But one thing which Star Trek contributed to our vocabulary, for which I will never forgive Gene Rodenberry, is “Logic”. As in, Mr. Spock saying “But that would not be logical.”.

The reason that this bugs me so much is because it’s taught a huge number of people that “logical” means the same thing as “reasonable”. Almost every time I hear anyone say that something is logical, they don’t mean that it’s logical – in fact, they mean something almost exactly opposite – that it seems correct based on intuition and common sense.

If you’re being strict about the definition, then saying that something is logical by itself is an almost meaningless statement. Because what it means for some statement to be “logical” is really that that statement is inferable from a set of axioms in some formal reasoning system. If you don’t know what formal system, and you don’t know what axioms, then the statement that something is logical is absolutely meaningless. And even if you do know what system and what axioms you’re talking about, the things that people often call “logical” are not things that are actually inferable from the axioms.

Continue reading

A Pathological Challenge: Prime Programming in NULL

Todays pathological language is actually in the form of a challenge for you. (Isn’t that
exciting?) It’s a very clever numerical programming language in the vein of Conway’s Fractran,
called NULL. The author of NULL describes it
as a reaction to 2 and 3 dimensional languages in the Befunge tradition; NULL is a 0
dimensional language – a program is just a single point. It’s quite clever in its way; the only
problem is that is that there’s only one example program written in it. So the challenge is
to see if you can actually come up with some implementations of interesting programs.

Continue reading

Basics: Correlation

Correlation and Causation

Yet another of the most abused mathematical concepts is the concept of correlation, along with the related (but different) concept of causation.

Correlation is actually a remarkably simple concept, which makes it all the more frustrating
to see the nonsense constantly spewed in talking about it. Correlation is a linear relationship between two random variables.

Continue reading

Basics: Recursion and Induction

Time for another sort-of advanced basic. I used some recursive definitions in my explanation
of natural numbers and integers. Recursion is a very fundamental concept, but one which many people have a very hard time wrapping their head around. So it’s worth taking the time to look at it, and see what it means and how it works.

The cleverest definition that I’ve seen of recursion comes from the Hackers dictionary. In there, it has:

recursion
n. See {recursion}.

Continue reading

Haskell: A First Step Into Monads

The biggest nightmare for most people learning Haskell is monads. Monads are the
key to how you can implement IO, state, parallelism, and sequencing (among numerous other things) in Haskell. The trick is wrapping your head around them.

Continue reading

Basics: Natural Numbers and Integers

One of the interestingly odd things about how people understand math is numbers. It’s
astonishing to see how many people don’t really understand what numbers are, or what different kinds of numbers there are. It’s particularly amazing to listen to people arguing
vehemently about whether certain kinds of numbers are really “real” or not.

Today I’m going to talk about two of the most basic kind of numbers: the naturals and the integers. This is sort of an advanced basics article; to explain things like natural numbers and integers, you can either write two boring sentences, or you can go a bit more formal. The formal
stuff is more fun. If you don’t want to bother with that, here are the two boring sentences:

  1. The natural numbers (written N) are zero and the numbers that can be
    written without fractions that are greater than zero.
  2. The integers (written Z) are all of the numbers, both larger and smaller than
    zero, that can be written without fractions.

Continue reading

Basics: Margin of Error

The margin of error is the most widely misunderstood and misleading concept in statistics. It’s positively frightening to people who actually understand what it means to see how it’s commonly used in the media, in conversation, sometimes even by other scientists!

The basic idea of it is very simple. Most of the time when we’re doing statistics, we’re doing statistics based on a sample – that is, the entire population we’re interested in is difficult to study; so what we try to do is pick a representative subset called a sample. If the subset is truly representative, then the statistics you generate using information gathered from the sample will be the same as information gathered from the population as a whole.

But life is never simple. We never have perfectly representative samples; in fact, it’s impossible to select a perfectly representative sample. So we do our best to pick good samples, and we use probability theory to work out a predication of how confident we can be that the statistics from our sample are representative of the entire population. That’s basically what the margin of error represents: how well we think that the selected sample will allow us to predict things about the entire population.

Continue reading

Misrepresenting Simulations

Yet another reader forwarded me a link to a rather dreadful article. This one seems to be by
someone who knows better, but prefers to stick with his political beliefs rather than an honest
exploration of the facts.

He’s trying to help provide cover for the anti-global warming cranks. Now, in light of all of the
data that we’ve gathered, and all of the different kinds of analyses that have been used
on that data, for anyone in the real world, it’s pretty undeniable that global warming is
a real phenomena, and that at least part of it is due to humanity.

Continue reading

Hellish Programming: Malbolge

I decided that for today, I’d show the most thoroughly evil programming language ever
devised. This is a language so thoroughly evil that it’s named Malbolge after a circle
of hell. It’s so evil that it’s own designer was not able to write a hello world program! In
fact, the only way that anyone managed to write a “Hello World” was by designing a genetic algorithm
to create one. This monstrosity is so thoroughly twisted that I decided to put it in the “Brain and Behavior” category on ScienceBlogs, because it’s a demonstration of what happens when you take a brain, and twist it until it breaks.

Continue reading