On the way to figuring out how to do sign-expanded forms of infinite and infinitesimal numbers, we need to look at yet another way of writing surreals that have infinite or infinitesimal parts. This new notation is called the normal form of a surreal
number, and what it does is create a canonical notation that separates the parts of a number that fit into different commensurate classes.
What we’re trying to capture here is the idea that a number can have multiple parts that are separated by exponents of ω. For example, think of a number like (3ω+π): it’s not equal to 3ω; but there’s no real multiplier that you can apply to 3ω that captures the difference between the two.