In my last post on game theory, I said that you could find an optimal
probabilistic grand strategy for any two-player, simultaneous move, zero-sum game.
It’s done through something called linear programming. But linear programming
is useful for a whole lot more than just game theory.
Linear programming is a general technique for solving a huge family of
optimization problems. It’s incredibly useful for scheduling, resource
allocation, economic planning, financial portfolio management,
and a ton of of other, similar things.
The basic idea of it is that you have a linear function,
called an objective function, which describes what you’d like
to maximize. Then you have a collection of inequalities, describing
the constraints of the values in the objective function. The solution to
the problem is a set of assignments to the variables in the objective function
that provide a maximum.