Category Archives: Bad Math

There's always more Cantor crackpottery!

I’m not the only one who gets mail from crackpots!

A kind reader forwarded me yet another bit of Cantor crackpottery. It never ceases to amaze me how many people virulently object to Cantor, and how many of them just spew out the same, exact, rubbish, somehow thinking that they’re different than all the others who made the same argument.

This one is yet another in the representation scheme. That is, it’s an argument that I can write out all of the real numbers whose decimal forms have one digit after the decimal point; then all of the reals with two digits; then all of them with 3 digits; etc. This will produce an enumeration, therefore, there’s a one-to-one mapping from the naturals to the reals. Presto, Cantor goes out the window.

Or not.

As usual, the crank starts off with a bit of pomposity:

Dear Colleague,

My mathematic researshes lead me to resolve the continuum theory of Cantor, subject of controversy since a long time.

This mail is made to inform the mathematical community from this work, and share the conclusions.

You will find in attachment extracts from my book “Théorie critique fondamentale des ensembles de Cantor”,

Inviting you to contact me,

Francis Collot,
Member of the American mathematical society
Membre de la société mathématique de France
Member of the Bulletin of symbolic logic
Director of éditions européennes

As a quick aside, I love how he signs he email “Member of the AMS”, as if that were something meaningful. The AMS is a great organization – but anyone can be a member. All you need to do is fill out a form, and write them a check. It’s not something that anyone sane or reasonable brags about, because it doesn’t mean anything.

Anyway, let’s move on. Here’s the entirety of his proof. I’ve reproduced the formatting as well as I could; the original document sent to me was a PDF, so the tables don’t cut-and-paste.

The well-order on the set of real numbers result from this remark that it is possible to build, after the comma, a set where each subset has the same number of ordered elements (as is ordered the subset 2 : 10 …13 … 99).

Each successive integer is able to be followed after the comma (in french the real numbers have one comma after the integer) by an increasing number of figures.

0,0 0,10 0,100
0,1 0,11 0,101
0,2 0,12 0,102
0,9 0,99 0,999

It is the same thing for each successive interger before the comma.

1 2 3

So it is the 2 infinite of real number.

For this we use the binary notation.

But Cantor and his disciples never obtained this simple result.

After that, the theory displays that the infinity is the asymptote of the two branches of the hyperbole thanks to an introduction of trigonometry notions.

The successive numbers which are on cotg (as 1/2, 1/3, 1/4, 1/5) never attain 0 because it would be necessary to write instead (1/2, 1/3, 1/4, 1/4 ).

The 0 of the cotg is also the origin of the asymptote, that is to say infinite.

The beginning is, pretty much, a typical example of the representational crankery. It’s roughly a restatement of, for example, John Gabriel and his decimal trees. The problem with it is simple: this kind of enumeration will enumerate all of the real numbers with finite length representations. Which means that the total set of values enumerated by this won’t even include all of the rational numbers, much less all of the real numbers.

(As an interesting aside: you can see a beautiful example of what Mr. Collot missed by looking at Conway’s introduction to the surreal numbers, On Numbers and Games, which I wrote about here. He specifically deals with this problem in terms of “birthdays” and the requirement to include numbers who have an infinite birthday, and thus an infinite representation in the surreal numbers.)

After the enumeration stuff, he really goes off the rails. I have no idea what that asymptote nonsense is supposed to mean. I think part of the problem is that mr. Collot isn’t very good at english, but the larger part of it is that he’s an incoherent crackpot.

Mathematical Illiteracy in the NYT

I know I’m late to the game here, but I can’t resist taking a moment to dive in to the furor surrounding yesterday’s appalling NY Times op-ed, “Is Algebra Necessary?”. (Yesterday was my birthday, and I just couldn’t face reading something that I knew would make me so angry.)

In case you haven’t seen it yet, let’s start with a quick look at the argument:

A typical American school day finds some six million high school students and two million college freshmen struggling with algebra. In both high school and college, all too many students are expected to fail. Why do we subject American students to this ordeal? I’ve found myself moving toward the strong view that we shouldn’t.

My question extends beyond algebra and applies more broadly to the usual mathematics sequence, from geometry through calculus. State regents and legislators — and much of the public — take it as self-evident that every young person should be made to master polynomial functions and parametric equations.

There are many defenses of algebra and the virtue of learning it. Most of them sound reasonable on first hearing; many of them I once accepted. But the more I examine them, the clearer it seems that they are largely or wholly wrong — unsupported by research or evidence, or based on wishful logic. (I’m not talking about quantitative skills, critical for informed citizenship and personal finance, but a very different ballgame.)

Already, this is a total disgrace. The number of cheap fallacies in this little excerpt is just amazing. To point out a couple:

  1. Blame the victim. We do a lousy job teaching math. Therefore, math is bad, and we should stop teaching it.
  2. Obfuscation. The author really wants to make it look like math is really terribly difficult. So he chooses a couple of silly phrases that take simple mathematical concepts, and express them in ways that make them sound much more complicated and difficult. It’s not just algebra: It’s polynomial functions and parametric equations. What do those two terms really mean? Basically, “simple algebra”. “Parametric equations” means “equations with variables”. “Polynomial equations” means equations that include variables with exponents. Which are, of course, really immensely terrifying and complex things that absolutely never come up in the real world. (Except, of course, in compound interest, investment, taxes, mortgages….)
  3. Qualification. The last paragraph essentially says “There are no valid arguments to support the teaching of math, except for the valid ones, but I’m going to exclude those.”

and from there, it just keeps getting worse. The bulk of the argument can be reduced to the first point above: lots of students fail high-school level math, and therefore, we should give up and stop teaching it. It repeats the same thing over and over again: algebra is so terribly hard, students keep failing it, and it’s just not useful (except for all of the places where it is)

One way of addressing the stupidity of this is to just take what the moron says, and try applying it to any other subject:

A typical American school day finds some six million high school students and two million college freshmen struggling with grammatical writing. In both high school and college, all too many students are expected to fail. Why do we subject American students to this ordeal? I’ve found myself moving toward the strong view that we shouldn’t.

My question extends beyond just simple sentence construction and applies more broadly to the usual english sequence – from basic sentence structure and grammar through writing full-length papers and essays. State regents and legislators — and much of the public — take it as self-evident that every young person should be made to master rhetoric, thesis construction, and logical synthesis.

Would any newspaper in the US, much less one as obsessed with its own status as the New York Times, ever consider publishing an article like that claiming that we shouldn’t bother to teach students to write? It’s an utter disgrace, but in America, land of the mathematically illiterate, this is an acceptable, respectable argument when applied to mathematics.

Is algebra really so difficult? No.

But more substantial, is it really useful? Yes. Here’s a typical example, from real life. My wife and I bought our first house back in 1997. Two years later, the interest rate had gone down by a substantial amount, so we wanted to refinance. We had a choice between two refinance plans: one had an interest rate 1/4% lower, but required pre-paying of 2% of the principal in a special lump interest payment. Which mortgage should we have taken?

The answer is, it depends on how long we planned to own the house. The idea is that we needed to figure out when the amount of money saved by the lower interest rate would exceed the 2% pre-payment.

How do you figure that out?

Well, the amortization equation describing the mortgage is:

m = p frac{i(i+1)^2}{(i+1)^n - 1}

Where:

  • m is the monthly payment on the mortgage.
  • p is the amount of money being borrowed on the loan.
  • i is the interest rate per payment period.
  • n is the number of payments.

Using that equation, we can see the monthly payment. If we calculate that for both mortgages, we get two values, m_1 and m_2. Now, how many months before it pays off? If D is the amount of the pre-payment to get the lower interest rate, then D = k(m_2 - m_1), where k is the number of months – so it would take k=frac{D}{m_2 - m_1} months. It happened that for us, k worked out to around 60 – that is, about 5 years. We did make the pre-payment. (And that was a mistake; we didn’t stay in that house as long as we’d planned.)

But whoa…. Quadratic equations!

According to our idiotic author, expecting the average american to be capable of figuring out the right choice in that situation is completely unreasonable. We’re screwing over students all over the country by expecting them to be capable of dealing with parametric polynomial equations like this.

Of course, the jackass goes on to talk about how we should offer courses in things like statistics instead of algebra. How on earth are you going to explain bell curves, standard deviations, margins of error, etc., without using any algebra? The guy is so totally clueless that he doesn’t even understand when he’s using it.

Total crap. I’m going to leave it with that, because writing about this is just making me so damned angry. Mathematical illiteracy is just as bad

The American Heat Wave and Global Warming

Global warming is a big issue. If we’re honest and we look carefully at the data, it’s beyond question that the atmosphere of our planet is warming. It’s also beyond any honest question that the preponderance of the evidence is that human behavior is the primary cause. It’s not impossible that we’re wrong – but when we look at the real evidence, it’s overwhelming.

Of course, this doesn’t stop people from being idiots.

But what I’m going to focus on here isn’t exactly the usual idiots. See, here in the US, we’re in the middle of a dramatic heat wave. All over the country, we’ve been breaking heat daily temperature records. As I write this, it’s 98 degrees outside here in NY, and we’re expecting another couple of degrees. Out in the west, there are gigantic wildfires, cause by poor snowfall last winter, poor rainfall this spring, and record heat to dry everything out. So: is this global warming?

We’re seeing lots and lots of people saying yes. Or worse, saying that it is, because of the heat wave, while pretending that they’re not really saying that it is. For one, among all-too-many examples, you can look at Bad Astronomy here. Not to rag too much on Phil though, because hes just one among about two dozen different example of this that I’ve seen in the last 3 days.

Weather 10 or twenty degree above normal isn’t global warming. A heat wave, even a massive epic heat wave, isn’t proof that global warming is real, any more than an epic cold wave or blizzard is evidence that global warming is fake.

I’m sure you’ve heard many people say weather is not climate. But for human beings, it’s really hard to understand just what that really means. Climate is a world-wide long-term average; weather is instantaneous and local. This isn’t just a nitpick: it’s a huge distinction. When we talk about global warming, what we’re talking about is the year-round average temperature changing by one or two degrees. A ten degree variation in local weather doesn’t tell us anything about the worldwide trend.

Global warming is about climate. And part of what that means is that in some places, global warming will probably make the weather colder. Cold weather isn’t evidence against global warming. Most people realize that – which is why we all laugh when gasbags like Rush Limbaugh talk about how a snowstorm “proves” that global warming is a fraud. But at the same time, we look at weather like what we have in the US, and conclude that “Yes, global warming is real”. But we’re making the same mistake.

Global warming is about a surprisingly small change. Over the last hundred years, global warming is a change of about 1 degree celsius in the global average temperature. That’s about 1 1/2 degrees fahrenheit, for us Americans. It seems miniscule, and it’s a tiny fraction of the temperature difference that we’re seeing this summer in the US.

But that tiny difference in climate can cause huge differences in weather. As I mentioned before, it can make local weather either warmer or colder – not just by directly warming the air, but by altering wind and water currents in ways that create dramatic changes.

For example, global warming could, likely, make Europe significantly colder. How? The weather in western Europe is greatly affected by an ocean water current called the atlantic conveyor. The conveyor is a cyclic ocean current, where (driven in part by the jet stream), warm water flows north from the equator in a surface current, cooling as it goes, until it finally sinks and starts to cycle back south in a deep underwater current. This acts as a heat pump, moving energy from the equator north and east to western Europe. This is why Western Europe is significantly warmer than places at the same latitude in Eastern North America.

Global warming could alter the flow of the atlantic conveyor. (We don’t know if it will – but it’s one possibility, which makes a good example of something counter-intuitive.) If the conveyor is slowed, so that it transfers less energy, Europe will get colder. How could the conveyor be slowed? By ice-melt. The conveyor works as a cycle because of the differences in density between warm and cold water: cold water is denser than warm water, so the cold water sinks as it cools. It warms in the tropics, gets pushed north by the jet stream, cools along the way and gradually sinks.

But global warming is melting a lot of artic and glacier ice, which produces freshwater. Freshwater is less dense than saltwater. So the freshwater, when it dilutes the cold water at the northern end of the conveyor, it reduces its density relative to the pure salt-water – and that reduces the tendency of the cold water to sink, which could slow the conveyor.

There are numerous similar phenomena that involve changes in ocean currents and wind due to relatively small temperature variations. El Nino and La Nina, conveyor changes, changes in the moisture-carrying capacity of wind currents to carry – they’re all caused by relatively small changes – changes well with the couple of degrees of variatio that we see occuring.

But we need to be honest and careful. This summer may be incredibly hot, and we had an unsually warm winter before it – but we really shouldn’t try to use that as evidence of global warming. Because if you do, when some colder-than-normal weather occurs somewhere, the cranks and liars that want to convince people that global warming is an elaborate fraud will use that the muddle things – and when they do, it’ll be our fault when people fall for it, because we’ll be the ones who primed them for that argument. As nice, as convenient, as convincing as it might seem to draw a correlation between a specific instance of extreme weather and global warming, we really need to stop doing it.

Numeric Pareidolia and Vortex Math

Update: as of 8/8/2012, the youtube video has been pulled at the request of the TED organization. They’ve also asked me to help them figure out how to keep crackpots like this out of their conferences. I turned them down: if they want help, they’ve got the money to hire a legitimate professional, someone who actually knows what they’re doing – i.e., not me.

I’m not a big fan of the TED phenomenon. In my opinion, it’s basically an elaborate scheme to help make a bunch of self-important rich guys show off their importance by getting people to come give them speeches that, ultimately, serve to reinforce their self-importance.

But there’s another reason that I dislike it. In addition to the self-importance of its audience, as it’s grown, it’s also turned into a forum where other self-important twits can pretend that they’re actual scientists presenting important scientific work.

A great example of this is something called “Vortex Math”. An idiot by the name of “Marko Rodin” came up with this ridiculous idea, wrote up a website talking about how wonderful it was and how brilliant he is, and then worked out an invitation to talk at one of the TEDX conferences, which he’s then used to further promote himself – after all, he must be a genuine genius in order to have been allowed to present to such an important group of people!

Vortex math is an example of what I called numerical pareidolia. For those who haven’t heard the term, pareidolia is seeing patterns in randomness. For example, the common event seeing the image of jesus in a piece of toast, or in a mildew stain, or… We find these images, and then believe that they’re not just an illusion, but that they’re a real, deliberate, meaningful reality.

Paradeidolia isn’t limited to seeing images. We humans are natural pattern seekers. We can find patterns in dirt, in words, and in numbers. Numeric pareidolia is finding patterns in numbers. The most common version of that is numerology, where you assign meanings to numbers, and then find more meanings by performing arithmetic to combine numbers with arithmetic, and finding meaning in result.

In Vortex math, Mr. Rodin has done something interesting, for some definition of that word. He’s found a numeric pattern, and he believes that not only is that a pattern, but it is the pattern, the fundamental structure of the universe. And what is this oh-so-awesome pattern, this vortex that defines the entire nature of the universe?

It’s a sequence of 1-digit, base-10 numbers. To get it, you start, obviously, with 1. So take the number 1. Double it. You get 2. Double it again, and you get 4. Again, 8. Again, 16. But 16 is two digits – so add them together: 7. Double 16 again, and you get 32, 3+2=5, so 5 is next. Double 32, and you get 64. 6+4=10, 1+0=1. Etc. You get a repeating cycle.

That’s it.

Of course, this only works in base-10. It’s a result of the interaction of doubling with the base. So you won’t get the same pattern in any other number system! According to Rodin, because of the significance of this pattern, that means that base-10 really is the only correct number system.

And what is the significance of this base-10 pattern? Let’s let Rodin and his supporters explain, shall we?

Marko Rodin has discovered the source of the non-decaying spin of the electron. Although scientists know that all electrons in the universe spin, they have never discovered the source of this spin. Rodin has. He has discovered the underpinning geometry of the universe, the fabric of time itself. He has done this by reducing all higher mathematics – calculus, geometry, scalar math – to discrete-number mathematics.

With the introduction of Vortex-Based Mathematics you will be able to see how energy is expressing itself mathematically. This math has no anomalies and shows the dimensional shape and function of the universe as being a toroid or donut-shaped black hole. This is the template for the universe and it is all within our base ten decimal system!

The potential scope and breadth of the Rodin Solution is staggering; it is universally applicable in mathematics, science, biology, medicine, genetics, astronomy, chemistry, physics and computer science. The Rodin Solution will revolutionize computer hardware by creating a crucial gap space, or equi-potential major groove, in processors. This gap space generates underpinning nested vortices resulting in far higher efficiency with no heat build-up. The Rodin Solution replaces the binary code with a new code called the binary triplet which will revolutionize computer operating systems. It will transform physics and astrophysics by finally answering how black holes and pulsars work. Space travel will be revolutionized by reactionless drives that are unaffected by the weight they pull, making the present day combustion engine obsolete. The revolution brought on by reactionless drives will far surpass the societal changes wrought by the shift from steam engines to the present day combustion engine. The Rodin Solution can even be applied to ending pollution and drought by creating an inexhaustible, nonpolluting energy source. Because Rodin´s Vortex-Based Mathematics enables him to condense a trillion-fold calculation to only a few integer steps and because he is able to solve all the mathematical enigmas, the Rodin Solution will revolutionize computer information compression.

Pretty impressive, eh?

And what would crackpottery be without at least a bit of conspiracy? See, the government knows all about it, and they’re actually secretly using it to protect us:

Rudimentary versions of the Rodin Coil, or Rodin Torus, have been created and tested by leading scientists and are presently being used by the U.S. Government in antennas that protect the four corners of the continental U.S.. Life-saving medical devices based on crude approximations of the Rodin Coil Torus are being manufactured and used in the treatment of cancer patients. Microsoft´s former senior researcher is using the Rodin Coil to research, develop and patent new computer information-compression schemes.

Nifty!

Alas, it’s all bullshit. It’s not worth spending too much time on this, but I’ll grab a couple of the claims that are close to my interests, and briefly explain why he’s so full of shit.

One of the claims in the passage above is how he’ll revolutionize computer operating systems:

The Rodin Solution replaces the binary code with a new code called the binary triplet which will revolutionize computer operating systems

Suppose for a moment, that we replaced binary in our computers with a different underlying representation – any underlying representation. Ternary, quadrary, decimal, or his “binary triplets”, whatever they are. How much difference would that make?

None at all. We’ve had the capacity to create ternary computers for a long time – there’s just no reason to. We have built decimal computers. For many years, IBM had computers for financial systems that used a representation called BCD – binary coded decimal. BCD can be useful in financials, because it’s easier to control rounding errors. Floating point math is a bit weird, because numbers that should be precise don’t necessarily have precise binary floating point representations, so you can get some odd rounding errors if you’re not careful. You don’t need BCD to do this – you can use a variety of notations, so long as you’re doing fixed point instead of floating point, but using a decimal fixed point representation makes it all easier.

The thing is, you can’t do anything with different representations that you can’t do with binary. It doesn’t matter. So we don’t build hardware using different representations. We don’t use binary because we don’t know how to build anything else; we use binary because it’s easiest to build binary hardware, and there’s no benefit to making the hardware more complex.

More important, one of the beautiful things about computers is that computers don’t really do binary numbers. Computers use binary to represent things. Numbers are one example of something we can represent. But we can represent anything we want. When I was in college, one of my assignments in a CS class was to implement ternary arithmetic. It’s a simple enough thing that it makes an easy assignment for an undergrad introductory CS class! We can build any representation that we want, and use it. We do this routinely. We’re constantly building new representations for particular purposes. Some of them are so useful that they’ve been enshrined in hardware. For example, computers used to only come with integer hardware – that is, the only mathematical operations that were implemented in the hardware were operations on integers. The computers still did floating point math – you just needed to implement the representation in software. It was so useful that we added it to hardware in order to make it faster. But it’s not fundamentally different. And if a new representation that worked better than simple binary worked, we could implement it using a standard binary computer.

So Rodin’s magic vortex binary-triple computer? There’s just nothing special about it. It’s not going to revolutionize computers.

Another example is compression:

Because Rodin´s Vortex-Based Mathematics enables him to condense a trillion-fold calculation to only a few integer steps and because he is able to solve all the mathematical enigmas, the Rodin Solution will revolutionize computer information compression.

Again, it’s stupid. The problem with compression isn’t that it’s too hard to compute. The problem is more fundamental than that. We can’t compress everything – it’s impossible. (I described more about the reason why it’s generally impossible to do universal compression in this post.) The science and math of data compression are based on the fact that we don’t actually want to compress arbitrary things; we want to compress specific types of things: text, images, video. For each of those, common representations contain a lot of redundancies, and compression tries to remove those redundancies. So, for example, by finding regions in successive frames of a video that don’t change, we can reduce the size of a video file. But that technique won’t do anything for a still image or a text file. We exploit the specific properties of the medium to find an effective way of compressing that specific medium.

In fact, we can do better at specific kinds of media with customized hardware. People build custom hardware for things like mp4 compression all the time. But that’s for a specific medium. It’s got nothing to do with general compression. General compression remains impossible, vortex math or no.

Willfull Ignorance about Statistics in Government

Quick but important one here.

I’ve repeatedly ranted here about ignorant twits. Ignorance is a plague on society, and it’s at its worst when it’s willful ignorance – that is, when you have a person who knows nothing about a subject, and who refuses to be bothered with something as trivial and useless about learning about it before they open their stupid mouths.

We’ve got an amazing, truly amazing, example of this in the US congress right now.
There’s a “debate” going on about something called the American Community Survey, or the
ACS for short. The ACS is a regular survey performed by the Census administration, which
measures a wide range of statistics related to economics.

A group of Republicans are trying to eliminate the ACS. Why? well, let’s put that question aside. And let’s also leave aside, for the moment, whether the survey is important or not. You can, honestly, put together an argument that the ACS isn’t worth doing, that it doesn’t measure the right things, that the value of the information gathered doesn’t measure up to the cost, that it’s intrusive, that it violates the privacy of the survey targets. But let’s not even bother with any of that.

Members of congress are arguing that the survey should be eliminated, and they’re claiming that the reason why is because the survey is unscientific. According to Daniel Webster, a representative from the state of Florida:

We’re spending $70 per person to fill this out. That’s just not cost effective, especially since in the end this is not a scientific survey. It’s a random survey.

Note well the emphasized point there. That’s the important bit.

The survey isn’t cost effective, the data gathered isn’t genuinely useful according to Representative Webster, because it’s not a scientific survey. Why isn’t it a scientific survey? Because it’s random.

This is what I mean by willful ignorance. Mr. Webster doesn’t understand what a survey is, or how a survey works, or what it takes to make a valid survey. He’s talking out his ass, trying to kill a statistical analysis for his own political reasons without making any attempt to actually understand what it is or how it works.

Surveys are, fundamentally, about statistical sampling. Given a large population, you can create estimates about the properties of the population by looking at a representative sample of the population. For example, if you’re looking at the entire population of America, you’re talking about hundreds of millions of people. You can’t measure, say, the employment rate of the entire population every year – there are just too many people. It’s too much information – it’s pretty much impossible to gather it.

But: if you can select a group of, say, 10,000 people, whose distribution matches the distribution of the wider population, then the data you gather about them will closely resemble the data about the wider population.

That’s the point of a survey: find a representative sample, and take measurements of that sample. Then, with a certain probability of correctness, you can infer the properties of the entire population from the properties of the sample.

Of course, there’s a catch. The key to a survey is the sample. The sample must be representative – meaning that the sample must have the same properties as the wider population of which it’s a part. But the point of survey is to discover those properties! If you choose your population to match what you believe the distribution to be, then you’ll bias your data towards matching that distribution. Your sample will only be representative if your beliefs about the data are correct. But that defeats the whole purpose of doing the survey.

So the scientific method of doing a survey is to be random. You don’t start with any preconceived idea of what the population is like. You just randomly select people in a way that makes sure that every member of the population is equally likely to be selected. If your selection is truly random, then there’s a high probability (a measurably high probability, based on the size of the sample and the size of the sampled population) that the sample will be representative.

Scientific sampling is always random.

So Mr. Webster’s statement could be rephrased more correctly as the following contradiction: “This is not a scientific survey, because this is a scientific survey”. But Mr. Webster doesn’t know that what he said is a stupid contradiction. Because he doesn’t care.

Obama Campaign Lies with Bad Math

This post is a bit of a change of pace for me.

As you all know, when it comes to politics, I’m a hardcore lefty liberal type. And lots of annoying people like to claim that the reason I write more critical posts about right-wing politicians than left-wing ones is because I’m hopelessly biased. I definitely do end up writing more posts critical of RW than LW politicians, but I believe that that’s because in modern day america, the right wing has completely lost touch with reality. They’re just far more likely to regurgitate long-disproven lies, or to use specious, unsupportable, or just plain pig-ignorant reasoning.

But a reader sent me a copy of a recent fund-raising letter from the Obama campaign, and it’s pissed me right off. I probably actually received a copy of it myself, but I’ve got my spam filters set to throw away anything from the Obama campaign, so I didn’t see it until it was pointed out to me.

When it comes to bad math, in my opinion, there are two main kinds. There’s ignorant bad math, and there’s dishonest bad math. In the former, the people pushing it don’t understand what they’re talking about. They’re saying something that they actually believe. It’s hopelessly wrong, and if they made any effort to learn something about what they’re babbling about, they’d see how wrong they are. In the latter kind, the people pushing it are deliberately trying to deceive their readers/listeners. They know that they’re doing something wrong, and they’re hoping that you are stupid enough to not catch on.

The latter kind of bad math is far worse than the former.

And this Obama campaign fundraising letter is very firmly in the latter camp.

I’m not going to post the entire thing, and I’m not going to provide a link. That would be giving them publicity for this despicable, dishonest effort, which is exactly what they want, and I will not reward them for this.

The letter starts by complaining about a Romney campaign fundraiser, saying:

It may not take the Romney camp very long to get to a million — they announced today that just 9 percent of their money comes from donors giving less than $200.

Take note of the fundamental point there. Of the money collected, 9% came from small donors.

Then they attempt to contrast themselves against Romney:

Our campaign is different. It’s about bringing people together to protect the progress we’ve made and make a lot more in a second term. And 98 percent of the donations people like you make to this campaign are $250 or less.

The main point: of the people donating, 98% were small donors.

You’re supposed to look at that, and say “90% of the donors to Romney are big-money people, but just 2% of the donors to Obama are.”

But they’re not comparing the same thing. One is a percentage of money, and the other is a percentage of people. Let’s take a quick look at an example, to show how this works.

Suppose we’ve got just ten donors. They gave 200, 200, 200, 100, 100, 100, 50, 50, 50, and 1,000,000 dollars, respectively. Obviously, 90% (9 out of 10) donors gave $200 or less. And if you work it out, more than 99% of the money came from donations of $1,000,000 or more.

What does the Obama campaigns actual donor distribution look like? I don’t know. But I’d guess that it’s actually pretty similar to the Romney campaign. Politics in America is, very much, a rich persons sport. Both campaigns are absolutely relying on huge donations from people with lots and lots of money. The Obama campaign wants to trick us into believing that they’re different. But all they’re doing is proving that they’re not. They’re lying to us, and hoping that we’re too stupid to notice.

(There’s another level of dishonesty there, but it’s far more trivial. In the Romney campaign figure, they talk about the percentage of donotions smaller than $200; for the Obama campaign figure, they use $250. Why? Probably because they wanted a number for the Romney campaign where they could say that more than 90% came from big donors. And hell, once they were lying, what’s another lie?)

Bad Arithmetic and Blatant Political Lies

I’ve been trying to say away from the whole political thing lately. Any time that I open my mouth to say anything about politicians, I get a bunch of assholes trying to jump down my throat for being “biased”. But sometimes, things just get too damned ridiculous, and I can’t possibly let it go without comment.

In the interests of disclosure: I despise Mitt Romney. Despite that, I think he’s gotten a very unfairly hard time about a lot of things. Let’s face it, the guys a rich investor. But that’s been taken by the media, and turned in to the story through which everything is viewed, whether it makes sense or not.

For example, there’s the whole $10,000 bet nonsense. I don’t think that that made a damned bit of sense. It was portrayed as “here’s a guy so rich that he can afford to lose $10,000”. But… well, let’s look at it from a mathematical perspective.

You can assess the cost of a bet by looking at it from probability. Take the cost of losing, and multiply it by the probability of losing. That’s the expected cost of the bet. So, in the case of that debate moment, what was the expected cost of the bet? $0. If you know that you’re betting about a fact, and you know the fact, then you know the outcome of the bet. It’s a standard rhetorical trick. How many of us have said “Bet you a million dollars”? It doesn’t matter what dollar figure you attach to it – because you know the fact, and you know that the cost of the bet, to you, is 0.

But… Well, Mitt is a rich asshole.

As you must have heard, Mitt released his income tax return for last year, and an estimate for this year. Because his money is pretty much all investment income, he paid a bit under 15% in taxes. This is, quite naturally, really annoying to many people. Those of us who actually have jobs and get paid salaries don’t get away with a tax rate that low. (And people who are paid salary rather than investment profits have to pay the alternative minimum tax, which means that they’re not able to deduct charity the way that Mitt is.)

So, in an interview, Mitt was asked about the fairness of a guy who made over twenty million dollars a year paying such a low rate. And Mitt, asshole that he is, tried to cover up the insanity of the current system, by saying:

Well, actually, I released two years of taxes and I think the average is almost 15 percent. And then also, on top of that, I gave another more 15 percent to charity. When you add it together with all of the taxes and the charity, particularly in the last year, I think it reaches almost 40 percent that I gave back to the community.

I don’t care about whether the reasoning there is good or not. Personally, I think it’s ridiculous to say “yeah, I didn’t pay taxes, but I gave a lot of money to my church, so it’s OK.” But forget that part. Just look at the freaking arithmetic!

He pays less than 15% in taxes.

He pays 15% in charity (mostly donations to his church).

What’s less than 15 + 15?

It sure as hell isn’t “almost 40 percent”. It’s not quite 30 percent. This isn’t something debatable. It’s simple, elementary school arithmetic. It’s just fucking insane that he thinks he can just get away with saying that. But he did – they let him say that, and didn’t challenge it at all. He says “less than 15 + 15 = almost 40”, and the interviewer never even batted an eye.

And then, he moved on to something which is a bit more debatable:

One of the reasons why we have a lower tax rate on capital gains is because capital gains are also being taxed at the corporate level. So as businesses earn profits, that’s taxed at 35 percent, then as they distribute those profits as dividends, that’s taxed at 15 percent more. So, all total, the tax rate is really closer to 45 or 50 percent.

Now, like I said, you can argue about that. Personally, I don’t think it’s a particularly good argument. The way that I see it, corporations are a tradeoff. A business doesn’t need to be a corporation. You become a corporation, because transforming the business into a quasi-independent legal entity gives you some big advantages. A corporation owns its own assets. You, as an individual who owns part of a corporation, aren’t responsible for the debts of the corporation. You, as an individual who owns part of a corporation, aren’t legally liable for the actions (such as libel) of the corporation. The corporation is an independent entity, which owns its own assets, which is responsible for its debts and actions. In exchange for taking on the legal status on an independent entity, that legal entity becomes responsible for paying taxes on its income. You give it that independent legal status in order to protect yourself; and in exchange, that independent legal status entails an obligation for that independent entity to pay its own taxes.

But hey, let’s leave that argument aside for the moment. Who pays the cost of the corporate taxes? Is it the owners of the business? Is it the people who work for the business? Is it someone else?

When they talk about their own ridiculously low tax rates, people like Mitt argue that they’re paying those taxes, and they want to add those taxes to the total effective tax that they pay.

But when they want to argue about why we should lower corporate tax rates, they pull out a totally different argument, which they call the “flypaper theory“. The flypaper theory argues that the burden of corporate taxes falls on the employees of the company – because if the company didn’t have to pay those taxes, that money would be going to the employees as salary – that is, the taxes are part of the overall expenses paid by the company. A company’s effective profits are (revenue – expenses). Expenses, in turn, are taxes+labor+materials+…. The company makes a profit of $P to satisfy its shareholders. So if you took away corporate taxes, the company could continue to make $P while paying its employees more. Therefore, the cost of the corporate taxes comes out of the salaries of the corporations employees.

You can make several different arguments – that the full burden of taxes fall on to the owners, or that the full burden of taxes falls on the employees, or that the full burden of taxes falls on the customers (because prices are raised to cover them). Each of those is something that you could reasonably argue. But what the conservative movement in America likes to do is to claim all of those: that the full burden of corporate taxes falls on the employees, and the full burden of corporate taxes falls on the customers, and the full burden of corporate taxes falls on the shareholders.

That’s just dishonest. If the full burden falls on one, then none of the burden falls on anyone else. The reality is, the burden of taxes is shared between all three. If there were no corporate taxes, companies probably would be able to pay their employees more – but there’s really no way that they’d take all of the money they pay in taxes, and push that into salary. And they’d probably be able to lower prices – but they probably wouldn’t lower prices enough to make up the entire difference. And they’d probably pay more in dividends/stock buybacks to pay the shareholders.

But you don’t get to count the same tax money three times.

Audiophiles and the Need to be Special

I love laughing at audiophiles.

If you’re not familiar with the term, audiophiles are people who are really into top-end audio equipment. In itself, that’s fine. But there’s a very active and vocal subset of the audiophile community that’s built up their self-image around the idea that they’re special. They don’t just have better audio equipment than you do, but they have better appreciation of sound quality than you do. In fact, their hearing is better than yours. They can hear nuances in sound quality that you can’t, because they’re so very, very special. They’ve developed this ability, you see, because they care more about music than you do.

It’s a very human thing. We all really want to be special. And when there’s something that’s really important to us – like music is for many people – there’s a very natural desire to want to be able to appreciate it on a deep level, a special level reserved only for people who really value it. But what happens when you take that desire, and convince yourself that it’s not just a desire? You wind up turning into a sucker who’s easy to fleece for huge quantities of money on useless equipment that can’t possibly work.

I first learned about these people from my old friend John Vlissides. John died of brain cancer about 5 years ago, which was incredibly sad. But back in the day, when we both worked at IBM Research, he and I were part of a group that ate lunch together every day. John was a reformed audiophile, and used to love talking about the crazy stuff he used to do.

Audiophiles get really nutty about things like cables. For example, John used to have the cables linking his speakers to his amp suspended from the ceiling using non-conductive cord. The idea behind that is that electrical signals are carried, primarily, on the outer surface of the wire. If the cable was sitting on the ground, it would deform slighly, and that would degrade the signal. Now, of course, there’s no perceptible difference, but a dedicated audiophile can convince themselves that they can hear it. In fact, this is what convinced John that it was all craziness: he was trained as an electrical engineer, and he sat down and worked out how much the signal should change as a result of the deformation of the copper wire-core, and seeing the real numbers, realized that there was no way in hell that he was actually hearing that tiny difference. Right there, that’s an example of the math aspect of this silliness: when you actually do the math, and see what’s going on, even when there’s a plausible explanation, the real magnitude of the supposed effect is so small that there’s absolutely no way that it’s perceptible. In the case of wire deformation, the magnitude of the effect on the sound produced by the signal carried by the wire is so small that it’s essentially zero – we’re talking about something smaller than the deformation of the sound waves caused by the motion of a mosquito’s wings somewhere in the room.

John’s epiphany was something like 20 years ago. But the crazy part of the audiophile community hasn’t changed. I encountered two instances of it this week that reminded me of this silliness and inspired me to write this post. One was purely accidental: I just noticed it while going about my business. The other, I noticed on boing-boing because the first example was already in my mind.

First, I was looking for an HDMI video cable for my TV. At the moment, we’ve got both an AppleTV and a cable box hooked up to our TV set. We recently found out that under our cable contract, we could get a free upgrade of the cable box, and the new box has HDMI output – so we’d need a new cable to use it.

HDMI is a relatively new standard video cable for carrying digital signals. Instead of old-fashioned analog signals that emulate the signal recieved by a good-old TV antenna like we used to use, HDMI uses a digital stream for both audio and video. Compared to old-fashioned analog, the quality of both audio and video on a TV using HDMI is dramatically improved. Analog signals were designed way, way back in the ’50s and ’60s for the televisions that they were producing then – they’re very low fidelity signals, which are designed to produce images on old TVs, which had exceedingly low resolution by modern standards.

The other really great thing about a digital system like HDMI is that digital signals don’t degrade. A digital system takes a signal, and reduces it to a series of bits – signals that can be interpreted as 1s and 0s. That series of bits is divided into bundles called packets. Each packet is transmitted with a checksum – an additional number that allows the receiver to check that it received the packet correctly. So for a given packet of information, you’ve either received it correctly, or you didn’t. If you didn’t, you request the sender to re-send it. So you either got it, or you didn’t. There’s no in-between. In terms of video quality, what that means is that the cable really doesn’t matter very much. It’s either getting the signal there, or it isn’t. If the cable is really terrible, then it just won’t work – you’ll get gaps in the signal where the bad packets dropped out – which will produce a gap in the audio or video.

In analog systems, you can have a lot of fuzz. The amplitude of the signal at any time is the signal – so noise effects that change the amplitude are changing the signal. There’s a very real possibility that interference will create real changes in the signal, and that those changes will produce a perceptible result when the signal is turned into sound or video. For example, if you listen to AM radio during a thunderstorm, you’ll hear a burst of noise whenever there’s a bolt of lightning nearby.

But digital systems like HDMI don’t have varying degrees of degradation. Because the signal is reduced to 1s and 0s – if you change the amplitude of a 1, it’s still pretty much going to look like a one. And if the noise is severe enough to make a 1 look like a 0, the error will be detected because the checksum will be wrong. There’s no gradual degradation.

But audiophiles… ah, audiophiles.

I was looking at these cables. A basic six-foot-long HDMI cable sells for between 15 and 25 dollars. But on the best-buy website, there’s a clearance cable for just $12. Great! And right next to it, there’s another cable. Also six feet long. For $240 dollars! 20-times higher, for a friggin’ digital cable! I’ve heard, on various websites, the rants about these crazies, but I hadn’t actually paid any attention. But now, I got to see it for myself, and I just about fell out of my chair laughing.

To prolong the entertainment, I went and looked at the reviews of this oh-so-amazing cable.

People who say there is NO difference between HDMI cables are just trying to justify to themselves to go cheap. Now it does depend on what you are connecting the cable between. If you put this Carbon HDMI on a Cable or Satellite box, you probably won’t see that much of a difference compared to some middle grade cables.

I connected this cable from my PS3 to my Samsung to first test it, then to my receiver. It was a nice upgrade from my previous Cinnamon cable, which is already a great cable in it’s own right. The picture’s motion was a bit smoother with gaming and faster action, but I still want to check the link to the guide about gaming monitors my fried sent me. I also noticed that film grain looked a little cleaner, not sure why though.

The biggest upgrade was with my audio though. Everything sounded a little crisper with more detail. I also noticed that the sound fields were more distinct. Again not sure exactly why, but I will take the upgrade.

All and all if you want the best quality, go Audio Quest and specifically a Carbon HDMI. You never have to upgrade your HDMI again with one of these guys. Downfall though is that it is a little pricey.

What’s great about it: Smooth motion and a little more definition in the picture

What’s not so great: Price

It’s a digital cable. The signal that it delivers to your TV and stereo is not the slightest bit different from the signal delivered by the $12 clearance cable. It’s been reduced by the signal producing system to a string of 1s and 0s – the identical string of 1s and 0s on both cables – and that string of bits is getting interpreted by exactly the same equipment on the receiver, producing exactly the same audio and video. There’s no difference. It has nothing to do with how good your ears are, or how perceptive you are. There is no difference.

But that’s nothing. The same brand sells a $700 cable. From the reviews:

I really just bought 3 of these. So if you would like an honest review, here it is. Compared to other Audio Quest cables, like the Vodka, you do not see a difference unless you know what to look for and have the equipment that can actually show the difference. Everyone can see the difference in a standard HDMI to an HDMI with Silver in it if you compare, but the difference between higher level cables is more subtle. Audio is the night and day difference with these cables. My bluray has 2 HDMI outs and I put one directly to the TV and one to my processor. My cable box also goes directly to my TV and I use Optical out of the TV because broadcast audio is aweful. The DBS systems keeps the cable ready for anything and I can tell that my audio is clean instantly and my picture is always flawless. They are not cheap cables, they are 100% needed if you want the best quality. I am considering stepping up to Diamond cables for my theater room when I update it. Hope this helps!

And they even have a “professional quality” HDMI cable that sells for well over $1000. And the audiophiles are all going crazy, swearing that it really makes a difference.

Around the time I started writing this, I also saw a post on BoingBoing about another audiophile fraud. See, when you’re dealing with this breed of twit who’s so convinced of their own great superiority, you can sell them almost anything if you can cobble together a pseudoscientific explanation for why it will make things sound better.

This post talks about a very similar shtick to the superexpensive cable: it’s a magic box which… well, let’s let the manufacturer explain.

The Blackbody ambient field conditioner enhances audio playback quality by modifying the interaction of your gear’s circuitry with the ambient electromagnetic field. The Blackbody eliminates sonic smearing of high frequencies and lowers the noise floor, thus clarifying the stereo image.

This thing is particularly fascinating because it doesn’t even pretend to hook in to your audio system. You just position it close to your system, and it magically knows what equipment it’s close to and “harmonizes” everything. It’s just… magic! But if you’re really special, you’ll be able to tell that it works!

Hydrinos: Impressive Free Energy Crackpottery

Back when I wrote about the whole negative energy rubbish, a reader wrote to me, and asked me to write something about hydrinos.

For those who are lucky enough not to know about them, hydrinos are part of another free energy scam. In this case, a medical doctor named Randell Mills claims to have discovered that hydrogen atoms can have multiple states beyond the typical, familiar ground state of hydrogen. Under the right conditions, so claims Dr. Mills, the electron shell around a hydrogen atom will compact into a tighter orbit, releasing a burst of energy in the process. And, in fact, it’s (supposedly) really, really easy to make hydrogen turn into hydrinos – if you let a bunch of hydrogen atoms bump in to a bunch of Argon atoms, then presto! some of the hydrogen will shrink into hydrino form, and give you a bunch of energy.

Wonderful, right? Just let a bunch of gas bounce around in a balloon, and out comes energy!

Oh, but it’s better than that. There are multiple hydrino forms: you can just keep compressing and compressing the hydrogen atom, pushing out more and more energy each time. The more you compress it, the more energy you get – and you don’t really need to compress it. You just bump it up against another atom, and poof! energy.

To explain all of this, Dr. Mills further claims to have invented a new
form of quantum mechanics, called “grand unified theory of classical quantum mechanics” (CQM for short) which provides the unification between relativity and quantum mechanics that people have been looking for. And, even better, CQM is fully deterministic – all of that ugly probabilistic stuff from quantum mechanics goes away!

The problem is, it doesn’t work. None of it.

What makes hydrinos interesting as a piece of crankery is that there’s a lot more depth to it than to most crap. Dr. Mills hasn’t just handwaved that these hydrino things exist – he’s got a very elaborate detailed theory – with a lot of non-trivial math – to back it up. Alas, the math is garbage, but it’s garbage-ness isn’t obvious. To see the problems, we’ll need to get deeper into math than we usually do.

Let’s start with a couple of examples of the claims about hydrinos, and the kind of favorable clueless press they’ve received.

Here is an example of how hydrino supporters explain them:

In 1986 Randell Mills MD developed a theory that hydrogen atoms could shrink, and release lots of energy in the process. He called the resultant entity a “Hydrino” (little Hydrogen), and started a company called Blacklight Power, Inc. to commercialize his process. He published his theory in a book he wrote, which is available in PDF format on his website. Unfortunately, the book contains so much mathematics that many people won’t bother with it. On this page I will try to present the energy related aspect of his theory in language that I hope will be accessible to many.

According to Dr. Mills, when a hydrogen atom collides with certain other atoms or ions, it can sometimes transfer a quantity of energy to the other atom, and shrink at the same time, becoming a Hydrino in the process. The atom that it collided with is called the “catalyst”, because it helps the Hydrino shrink. Once a Hydrino has formed, it can shrink even further through collisions with other catalyst atoms. Each collision potentially resulting in another shrinkage.

Each successive level of shrinkage releases even more energy than the previous level. In other words, the smaller the Hydrino gets, the more energy it releases each time it shrinks another level.

To get an idea of the amounts of energy involved, I now need to introduce the concept of the “electron volt” (eV). An eV is the amount of energy that a single electron gains when it passes through a voltage drop of one volt. Since a volt isn’t much (a “dry cell” is about 1.5 volts), and the electric charge on an electron is utterly minuscule, an eV is a very tiny amount of energy. Nevertheless, it is a very representative measure of the energy involved in chemical reactions. e.g. when Hydrogen and Oxygen combine to form a water molecule, about 2.5 eV of energy is released per water molecule formed.

When Hydrogen shrinks to form a second level Hydrino (Hydrogen itself is considered to be the first level Hydrino), about 41 eV of energy is released. This is already about 16 times more than when Hydrogen and Oxygen combine to form water. And it gets better from there. If that newly formed Hydrino collides with another catalyst atom, and shrinks again, to the third level, then an additional 68 eV is released. This can go on for quite a way, and the amount gets bigger each time. Here is a table of some level numbers, and the energy released in dropping to that level from the previous level, IOW when you go from e.g. level 4 to level 5, 122 eV is released. (BTW larger level numbers represent smaller Hydrinos).

And some of the press:

Notice a pattern?

The short version of the problem with hydrinos is really, really simple.

The most fundamental fact of nature that we’ve observed is that everything tends to move towards its lowest energy state. The whole theory of hydrinos basically says that that’s not true: everything except hydrogen tends to move towards its lowest energy state, but hydrogen doesn’t. It’s got a dozen or so lower energy states, but none of the abundant quantities of hydrogen on earth are ever observed in any of those states unless they’re manipulated by Mills magical machine.

The whole basis of hydrino theory is Mills CQM. CQM is rubbish – but it’s impressive looking rubbish. I’m not going to go deep into detail; you can see a detailed explanation of the problems here; I’ll run through a short version.

To start, how is Mills claiming that hydrinos work? In CQM, he posits the existence of electron shell levels closer to the nucleus than the ground state of hydrogen. Based on his calculations, he comes up with an energy figure for the difference between the ground state and the hydrino state. Then he finds other substances that have the property that boosting one electron into a higher energy state would cost the same amount of energy. When a hydrogen atom collides with an atom that has a matching electron transition, the hydrogen can get bumped into the hydrino state, while kicking an electron into a higher orbital. That electron will supposedly, in due time, fall back to its original level, releasing the energy differential as a photon.

On this level, it sort-of looks correct. It doesn’t violate conservation of energy: the collision between the two atoms doesn’t produce anything magical. It’s just a simple transfer of energy. That much is fine.

It’s when you get into the details that it gets seriously fudgy.

Right from the start, if you know what you’re doing, CQM goes off the rails. For example, CQM claims that you can describe the dynamics of an electron in terms of a classical wave charge-density function equation. Mills actually gives that function, and asserts that it respects Lorentz invariance. That’s crucial – Lorentz invariance is critical for relativity: it’s the fundamental mathematical symmetry that’s the basis of relativity. But his equation doesn’t actually respect Lorentz invariance. Or, rather, it does – but only if the electron is moving at the speed of light. Which it can’t do.

Mills goes on to describe the supposed physics of hydrinos. If you work through his model, the only state that is consistent with both his equations, and his claim that the electrons orbit in a spherical shell above the atom – well, if you do that, you’ll find that according to his own equations, there is only one possible state for a hydrogen atom – the conventional ground state.

It goes on in that vein for quite a while. He’s got an elaborate system, with an elaborate mathematical framework… but none of the math actually says what he says it says. The Lorentz invariance example that I cited above – that’s typical. Print an equation, say that it says X, even though the equation doesn’t say anything like X.

But we can go a bit further. The fundamental state of atoms is something that we understand pretty well, because we’ve got so many observations, and so much math describing it. And the thing is, that math is pretty damned convincing. That doesn’t mean that it’s correct, but it does mean that any theory that wants to replace it must be able to describe everything that we’ve observed at least as well as the current theory.

Why do atoms have the shape that they do? Why are the size that they are? It’s not a super easy thing to understand, because electrons aren’t really particles. They’re something strange. We don’t often think about that, but it’s true. They’re deeply bizarre things. They’re not really particles. Under many conditions, they behave more like waves than like particles. And that’s true of the atom.

The reason that atoms are the size that they are is because the electron “orbitals” have sizes and shapes that are determined by resonant frequencies of the wave-like aspects of electrons. What Mills is suggesting is that there are a range of never-before observed resonant frequencies of electrons. But the math that he uses to support that claim just doesn’t work.

Now, I’ll be honest here. I’m not nearly enough of a physics whiz to be competent to judge the accuracy of his purported quantum mechanical system. But I’m still pretty darn confident that he’s full of crap. Why?

I’m from New Jersey – pretty much right up the road from where his lab is. Going to college right up the road from him, I’ve been hearing about his for a long time. He’s been running this company for quite a while – going on two decades. And all that time, the company has been constantly issuing press releases promising that it’s just a year away from being commercialized! It’s always one step away. But never, never, has he released enough information to let someone truly independent verify or reproduce his results. And he’s been very deceptive about that: he’s made various claims about independent verification on several occasions.

For example, he once cited that his work had been verified by a researcher at Harvard. In fact, he’d had one of his associates rent a piece of equipment at Harvard, and use it for a test. So yes, it was tested by a researcher – if you count his associate as a legitimate researcher. And it was tested at Harvard. But the claim that it was tested by a researcher at Harvard is clearly meant to imply that it was tested by a Harvard professor, when it wasn’t.

For something around 20 years, he’s been making promises, giving very tightly controlled demos, refusing to give any real details, refusing to actually explain how to reproduce his “results”, and promising that it’s just one year away from being commercialized!

And yet… hydrogen is the most common substance in the universe. If it really had a lower energy state that what we call it’s ground state, and that lower energy state was really as miraculous as he claims – why wouldn’t we see it? Why hasn’t it ever been observed? Substances like Argon are rare – but they’re not that rare. Argon has been exposed to hydrogen under laboratory conditions plenty of times – and yet, nothing anamalous has even been observed. All of the supposed hydrino catalysts have been observed so often under so many conditions – and yet, no anamolous energy has even been noticed before. But according to Mills, we should be seeing tons of it.

And that’s not all. Mills also claims that you can create all sorts of compounds with hydrinos – and naturally, every single one of those compounds is positively miraculous! Bonded with silicon, you get better semiconductors! Substitute hydrinos for regular hydrogen in a battery electrolyte, and you get a miracle battery! Use it in rocket fuel instead of common hydrogen, and you get a ten-fold improvement in the performance of a rocket! Make a laser from it, and you can create higher-density data storage and communication systems. Everything that hydrinos touch is amazing

But… not one of these miraculous substances has ever been observed before. We work with silicon all the time – but we’ve never seen the magic silicon hydrino compound. And he’s never been willing to actually show anyone any of these miracle substances.

He claims that he doesn’t show it because he’s protecting his intellectual property. But that’s silly. If hydrinos existed, then just telling us that these compounds exist and have interesting properties should be enough for other labs to go ahead and experiment with producing them. But no one has. Whether he shows the supposed miracle compounds or not doesn’t change anyone else’s ability to produce those. Even if he’s keeping his magic hydrino factory secret, so that no one else has access to hydrinos, by telling us that these compounds exist, he’s given away the secret. He’s not protecting anything anymore: by publically talking about these things, he’s given up his right to patent the substances. It’s true that he still hasn’t given up the rights to the process of producing them – but publicly demonstrating these alleged miracle substances wouldn’t take away any legal rights that he hasn’t already given up. So, why doesn’t he show them to you?

Because they don’t exist.

Second Law Silliness from Sewell

So, via Panda’s Thumb, I hear that Granville Sewell is up to his old hijinks. Sewell is a classic creationist crackpot, who’s known for two things.

First, he’s known for chronically recycling the old “second law of thermodynamics” garbage. And second, he’s known for building arguments based on “thought experiments” – where instead of doing experiments, he just makes up the experiments and the results.

The second-law crankery is really annoying. It’s one of the oldest creationist pseudo-scientific schticks around, and it’s such a terrible argument. It’s also a sort-of pet peeve of mine, because I hate the way that people generally respond to it. It’s not that the common response is wrong – but rather that the common responses focus on one error, while neglecting to point out that there are many deeper issues with it.

In case you’ve been hiding under a rock, the creationist argument is basically:

  1. The second law of thermodynamics says that disorder always increases.
  2. Evolution produces highly-ordered complexity via a natural process.
  3. Therefore, evolution must be impossible, because you can’t create order.

The first problem with this argument is very simple. The second law of thermodynamics does not say that disorder always increases. It’s a classic example of my old maxim: the worst math is no math. The second law of thermodynamics doesn’t say anything as fuzzy as “you can’t create order”. It’s a precise, mathematical statement. The second law of thermodynamics says that in a closed system:

 Delta S geq int frac{delta Q}{T}

where:

  1. S is the entropy in a system,
  2. Q is the amount of heat transferred in an interaction, and
  3. T is the temperature of the system.

Translated into english, that basically says that in any interaction that involves the
transfer of heat, the entropy of the system cannot possible be reduced. Other ways of saying it include “There is no possible process whose sole result is the transfer of heat from a cooler body to a warmer one”; or “No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work.”

Note well – there is no mention of “chaos” or “disorder” in these statements: The second law is a statement about the way that energy can be used. It basically says that when
you try to use energy, some of that energy is inevitably lost in the process of using it.

Talking about “chaos”, “order”, “disorder” – those are all metaphors. Entropy is a difficult concept. It doesn’t really have a particularly good intuitive meaning. It means something like “energy lost into forms that can’t be used to do work” – but that’s still a poor attempt to capture it in metaphor. The reason that people use order and disorder comes from a way of thinking about energy: if I can extract energy from burning gasoline to spin the wheels of my car, the process of spinning my wheels is very organized – it’s something that I can see as a structured application of energy – or, stretching the metaphor a bit, the energy that spins the wheels in structured. On the other hand, the “waste” from burning the gas – the heating of the engine parts, the energy caught in the warmth of the exhaust – that’s just random and useless. It’s “chaotic”.

So when a creationist says that the second law of thermodynamics says you can’t create order, they’re full of shit. The second law doesn’t say that – not in any shape or form. You don’t need to get into the whole “open system/closed system” stuff to dispute it; it simply doesn’t say what they claim it says.

But let’s not stop there. Even if you accept that the mathematical statement of the second law really did say that chaos always increases, that still has nothing to do with evolution. Look back at the equation. What it says is that in a closed system, in any interaction, the total entropy must increase. Even if you accept that entropy means chaos, all that it says is that in any interaction, the total entropy must increase.

It doesn’t say that you can’t create order. It says that the cumulative end result of any interaction must increase entropy. Want to build a house? Of course you can do it without violating the second law. But to build that house, you need to cut down trees, dig holes, lay foundations, cut wood, pour concrete, put things together. All of those things use a lot of energy. And in each minute interaction, you’re expending energy in ways that increase entropy. If the creationist interpretation of the second law were true, you couldn’t build a house, because building a house involves creating something structured – creating order.

Similarly, if you look at a living cell, it does a whole lot of highly ordered, highly structured things. In order to do those things, it uses energy. And in the process of using that energy, it creates entropy. In terms of order and chaos, the cell uses energy to create order, but in the process of doing so it creates wastes – waste heat, and waste chemicals. It converts high-energy structured molecules into lower-energy molecules, converting things with energetic structure to things without. Look at all of the waste that’s produced by a living cell, and you’ll find that it does produce a net increase in entropy. Once again, if the creationists were right, then you wouldn’t need to worry about whether evolution was possible under thermodynamics – because life wouldn’t be possible.

In fact, if the creationists were right, the existence of planets, stars, and galaxies wouldn’t be possible – because a galaxy full of stars with planets is far less chaotic than loose cloud of hydrogen.

Once again, we don’t even need to consider the whole closed system/open system distinction, because even if we treat earth as a closed system, their arguments are wrong. Life doesn’t really defy the laws of thermodynamics – it produces entropy exactly as it should.

But the creationist second-law argument is even worse than that.

The second-law argument is that the fact that DNA “encodes information”, and that the amount of information “encoded” in DNA increases as a result of the evolutionary process means that evolution violates the second law.

This absolutely doesn’t require bringing in any open/closed system discussions. Doing that is just a distraction which allows the creationist to sneak their real argument underneath.

The real point is: DNA is a highly structured molecule. No disagreement there. But so what? In the life of an organism, there are virtually un-countable numbers of energetic interactions, all of which result in a net increase in the amount of entropy. Why on earth would adding a bunch of links to a DNA chain completely outweigh those? In fact, changing the DNA of an organism is just another entropy increasing event. The chemical processes in the cell that create DNA strands consume energy, and use that energy to produce molecules like DNA, producing entropy along the way, just like pretty much every other chemical process in the universe.

The creationist argument relies on a bunch of sloppy handwaves: “entropy” is disorder; “you can’t create order”, “DNA is ordered”. In fact, evolution has no problem with respect to entropy: one way of viewing evolution is that it’s a process of creating ever more effective entropy-generators.

Now we can get to Sewell and his arguments, and you can see how perfectly they match what I’ve been talking about.

Imagine a high school science teacher renting a video showing a tornado sweeping through a town, turning houses and cars into rubble. When she attempts to show it to her students, she accidentally runs the video backward. As Ford predicts, the students laugh and say, the video is going backwards! The teacher doesn’t want to admit her mistake, so she says: “No, the video is not really going backward. It only looks like it is because it appears that the second law is being violated. And of course entropy is decreasing in this video, but tornados derive their power from the sun, and the increase in entropy on the sun is far greater than the decrease seen on this video, so there is no conflict with the second law.” “In fact,” the teacher continues, “meteorologists can explain everything that is happening in this video,” and she proceeds to give some long, detailed, hastily improvised scientific theories on how tornados, under the right conditions, really can construct houses and cars. At the end of the explanation, one student says, “I don’t want to argue with scientists, but wouldn’t it be a lot easier to explain if you ran the video the other way?”

Now imagine a professor describing the final project for students in his evolutionary biology class. “Here are two pictures,” he says.

“One is a drawing of what the Earth must have looked like soon after it formed. The other is a picture of New York City today, with tall buildings full of intelligent humans, computers, TV sets and telephones, with libraries full of science texts and novels, and jet airplanes flying overhead. Your assignment is to explain how we got from picture one to picture two, and why this did not violate the second law of thermodynamics. You should explain that 3 or 4 billion years ago a collection of atoms formed by pure chance that was able to duplicate itself, and these complex collections of atoms were able to pass their complex structures on to their descendants generation after generation, even correcting errors. Explain how, over a very long time, the accumulation of genetic accidents resulted in greater and greater information content in the DNA of these more and more complicated collections of atoms, and how eventually something called “intelligence” allowed some of these collections of atoms to design buildings and computers and TV sets, and write encyclopedias and science texts. But be sure to point out that while none of this would have been possible in an isolated system, the Earth is an open system, and entropy can decrease in an open system as long as the decreases are compensated by increases outside the system. Energy from the sun is what made all of this possible, and while the origin and evolution of life may have resulted in some small decrease in entropy here, the increase in entropy on the sun easily compensates this tiny decrease. The sun should play a central role in your essay.”

When one student turns in his essay some days later, he has written,

“A few years after picture one was taken, the sun exploded into a supernova, all humans and other animals died, their bodies decayed, and their cells decomposed into simple organic and inorganic compounds. Most of the buildings collapsed immediately into rubble, those that didn’t, crumbled eventually. Most of the computers and TV sets inside were smashed into scrap metal, even those that weren’t, gradually turned into piles of rust, most of the books in the libraries burned up, the rest rotted over time, and you can see see the result in picture two.”

The professor says, “You have switched the pictures!” “I know,” says the student. “But it was so much easier to explain that way.”

Evolution is a movie running backward, that is what makes it so different from other phenomena in our universe, and why it demands a very different sort of explanation.

This is a perfect example of both of Sewell’s usual techniques.

First, the essential argument here is rubbish. It’s the usual “second-law means that you can’t create order”, even though that’s not what it says, followed by a rather shallow and pointless response to the open/closed system stuff.

And the second part is what makes Sewell Sewell. He can’t actually make his own arguments. No, that’s much too hard. So he creates fake people, and plays out a story using his fake people and having them make fake arguments, and then uses the people in his story to illustrate his argument. It’s a technique that I haven’t seen used so consistency since I read Ayn Rand in high school.