Category Archives: Bad Math

This one's for you, Larry! The Quadrature BLINK Kickstarter

After yesterday’s post about the return of vortex math, one of my coworkers tweeted the following at me:

Larry’s a nice guy, even if he did give me grief at my new-hire orientation. So I decided to take a look. At oh my, what a treasure he found! It’s a self-proclaimed genius with a wonderful theory of everything. And he’s running a kickstarter campaign to raise money to publish it. So it’s a lovely example of profound crackpottery, with a new variant of the buy my book gambit!

To be honest, I’m a bit uncertain about this. At times, it seems like the guy is dead serious; at other times, it seems like it’s an elaborate prank. I’m going to pretend that it’s completely serious, because that will make this post more fun.

So, what exactly is this theory of everything? I don’t know for sure. He’s dropping hints, but he’s not going to tell us the details of the theory until enough people buy his book! But he’s happy to give us some hints, starting with an explanation of what’s wrong with physics, and why a guy with absolutely no background in physics or math is the right person to revolutionize physics! He’ll explain it to us in nine brief points!

First: Let me ask you a question. Since the inclusion of Relativity and Dirac’s Statistical Model, why has Physics been at loose ends to unify the field? Everyone has tried and failed, and for this reason so many have pointed out: what we don’t need, is another TOE, Theory of Everything. So if I was a Physicist, my theory would probably just be one of these… a failed TOE based on the previous literature.

But why do these theories fail? One thing for sure is that in academia every new ideas stems from previously accepted ideas, with a little tweak here or there. In the main, TOEs in Physics have this in common, and they all have failed. What does this tell you?

See, those physicists, they’re all just trying the same stuff, and they all failed, therefore they’ll never succeed.

When I look at modern physics, I see some truly amazing things. To pull out one particularly prominent example from this year, we’ve got the higgs boson. He’ll sneer at the higgs boson a bit later, but that was truly astonishing: decades ago, based on a deep understanding of the standard model of particle physics, a group of physicists worked out a theory of what mass was and how it worked. They used that to make a concrete prediction about how their theory could tested. It was untestable at the time, because the kind of equipment needed to perform the experiment didn’t exist, and couldn’t exist with current technology. 50 years later, after technology advanced, their prediction was confirmed.

That’s pretty god-damnned amazing if you ask me.

Based on the arguments from our little friend, a decade ago, you could have waved your hands around, and said that physicists had tried to create theories about why things had mass, and they’d failed. Therefore, obviously, no theory of mass was going to come from physics, and if you wanted to understand the universe, you’d have to turn to non-physicists.

On to point two!

Second: the underlying assumptions in Physics must be wrong, or somehow grossly mis-specified.

That’s it. That’s the entire point. No attempt to actually support that argument. How do we know that the underlying assumptions in physics must be wrong? Because he says so. Period.

Third: Who can challenge the old paradigm of Physics, only Copernicus? Physicists these days cannot because they are too inured of their own system of beliefs and methodologies. Once a PhD is set in place, Lateral Thinking, or “thinking outside the box,” becomes almost impossible due to departmental “silo thinking.” Not that physicists aren’t smart – some are genius, but like everyone in the academic world they are focused on publishing, getting research grants, teaching and other administrative duties. This leaves little time for creative thinking, most of that went into the PhD. And a PhD will not be accepted unless a candidate is ready and willing to fall down the “departmental silo.” This has a name: Catch 22.

It’s the “good old boys” argument. See, all those physicists are just doing what their advisors tell them to; once they’ve got their PhD, they’re just producing more PhDs, enforcing the same bogus rules that their advisors inflicted on them. Not a single physicist in the entire world is willing to buck this! Not one single physicist in the world is willing to take the chance of going down as one of the greatest scientific minds in history by bucking the conventional wisdom.

Except, of course, there are plenty of people doing that. For an example, right off the top of my head, we’ve got the string theorists. Sure, they get lots of justifiable criticism. But they’ve worked out a theory that does seem to describe many things about the universe. It’s not testable with present technology, and it’s not clear that it will ever be testable with any kind of technology. But according to Bretholt’s argument, the string theorists shouldn’t exist. They’re bucking the conventional model, and they’re getting absolutely hammered for it by many of their colleagues – but they’re still going ahead and working on it, because they believe that they’re on to something important.

Fourth: There is not much new theory-making going on in Physics since its practitioners believe their Standard Model is almost complete: just a few more billion dollars in research and all the colors of the Higgs God Particle may be sorted, and possibly we may even glimpse the Higgs Field itself. But this is sort of like hunting down terrorists: if you are in control of defining what a terrorist is, then you will never be out of a job or be without a budget. This has a name too: Self-Fulfilling Prophesy. The brutal truth…

Right, there’s not much new theory-making going on in physics. No one is working on string theory. There’s no one coming up with theories about dark matter or dark energy. There’s no one trying to develop a theory of quantum gravity. No one ever does any of this stuff, because there’s no new theory-making going on.

Of course, he hand-waves one of the most fantastic theory-confirmations from physics. The higgs got lots of press, and lots of people like to hand-wave about it and overstate what it means. (“It’s the god particle!”) But even stripped down to its bare minimum, it’s an incredible discovery, and for a jackass like this to wave his hands and pretend that it’s meaningless and we need to stop wasting time on stuff like the LHC and listen to him: I just don’t even know the right words to describe the kind of disgust it inspires in me.

Fifth: Who then can mount such a paradigm-breaking project? Someone like me, prey tell! But birds like me just don’t sit around the cage and get fat, we fly to the highest vantage point, and see things for what they are! We have a name as well: Free Thinkers. We are exactly what your mother warned you of… There’s a long list of us include Socrates, Christ, Buddha, Taoist Masters, Tibetan Masters, Mohammed, Copernicus, Newton, Maxwell, Gödel, Hesse, Jung, Tesla, Planck… All are Free Thinkers, confident enough in their own knowledge and wisdom that they are willing to risk upsetting the applecart! We soar so humanity can peer beyond its petty day to day and discover itself.

There’s two things that really annoy me about this paragraph. First of all, there’s the arrogance. This schmuck hasn’t done anything yet, but he sees fit to announce that he’s up there with Newton, Maxwell, etc.

Second, there’s the mushing together of scientists and religious figures. Look, I’m a religious jew. I don’t have anything against respecting theology, theologians, or religious authorities. But science is different. Religion is about subjective experience. Even if you believe profoundly in, say, Buddhism, you can’t just go through the motions of what Buddha supposedly did and get exactly the same result. There’s no objective, repeatable way of testing it. Science is all about the hard work of repeatable, objective experimentation.

He continues point 5:

This chain might have included Einstein and Dirac had they not made three fatal mistakes in Free Thinking: They let their mathematical machine dictate what was true rather than using mathematics only to confirm their observations, they got fooled by their own anthropomorphic assumptions, and then they rooted these assumptions into their mathematical methods. This derailed the last two generations of scientific thinking.

Here’s where he strays into the real territory of this blog.

Crackpots love to rag on mathematics. They can’t understand it, and they want to believe that they’re the real geniuses, so the math must be there to confuse things!

Scientists don’t use math to be obscure. Learning math to do science isn’t some sort of hazing ritual. The use of math isn’t about making science impenetrable to people who aren’t part of the club. Math is there because it’s essential. Math gives precision to science.

Back to the Higgs boson for a second. The people who proposed the Higgs didn’t just say “There’s a field that gives things mass”. They described what the field was, how they thought it worked, how it interacted with the rest of physics. The only way to do that is with math. Natural language is both too imprecise, and too verbose to be useful for the critical details of scientific theories.

Let me give one example from my own field. When I was in grad school, there was a new system of computer network communication protocols under design, called OSI. OSI was complex, but it had a beauty to its complexity. It carefully divided the way that computer networks and the applications that run on them work into seven layers. Each layer only needed to depend on the details of the layer beneath it. When you contrast it against TCP/IP, it was remarkable. TCP/IP, the protocol that we still use today, is remarkably ad-hoc, and downright sloppy at times.

But we’re still using TCP/IP today. Why?

Because OSI was specified in english. After years of specification, several companies and universities implemented OSI network stacks. When they connected them together, what happened? It didn’t work. No two of the reference implementations could talk to each other. Each of them was perfectly conformant with the specification. But the specification was imprecise. To a human reader, it seemed precise. Hell, I read some of those specifications (I worked on a specification system, and read all of specs for layers 3 and 4), and I was absolutely convinced that they were precise. But english isn’t a good language for precision. It turned out that what we all believed was perfectly precise specification actually had numerous gaps.

There’s still a lot of debate about why the OSI effort failed so badly. My take, having been in the thick of it is that this was the root cause: after all the work of building the reference implementations, they realized that their specifications needed to go back to the drawing board, and get the ambiguities fixed – and the world outside of the OSI community wasn’t willing to wait. TCP/IP, for all of its flaws, had a perfectly precise specification: the one, single, official reference implementation. It might have been ugly code, it might have been painful to try to figure out what it meant – but it was absolutely precise: whatever that code did was right.

That’s the point of math in science: it gives you that kind of unambiguous precision. Without precision, there’s no point to science.

Sixth: What happens to Relativity when the assumptions of Lorentz’ space-time is removed? Under these assumptions, the speed of light limits the speed of moving bodies. The Lorentz Transformation was designed specifically to set this speed limit, but there is no factual evidence to back it up. At first, the transformation assumed that there would be length and time dilations and a weight increase when travelling at sub-light speeds. But after the First Misguided Generation ended in the mid 70’s, the weight change idea was discarded as untenable. It was quietly removed because it implied that a body propagating at or near the speed of light would become infinitely massive and turn into a black hole. Thus, the body would swallow itself up and disappear!

Whoops… bad assumption!

The space contraction idea was left intact because it was imperative to Hilbert’s rendition of the space-time geodesic that he devised for Einstein in 1915. Hilbert was the best mathematician of his day, if not ever! He concocted the mathematical behemoth called General Relativity to encapsulate Einstein’s famous insight that gravitation was equivalent to an accelerating frame. Now, not only was length assumed to contract, but space was assumed to warp and gravitation was assumed to be an accelerating frame, though no factual evidence exists to back up these assumptions!

Whoops… 3 bad assumptions in a row!

This is an interestingly bizarre argument.

Relativity predicts a change in mass (not weight!) as velocity increases. That prediction has not changed. It has been confirmed, repeatedly, by numerous experiments. The entire reasoning here is based on the unsupported assertion that relativistic changes in mass have been discarded as incorrect. But that couldn’t be farther from the truth!

Similarly, he’s asserting that the space-warping effects of gravity – one of the fundamental parts of general relativity – is incorrect, again without the slightest support.

This is going to seem like a side-track, but bear with me:

When I came in to my office this morning, I took out my phone and used foursquare to check in. How did that work? Well, my phone received signals from a collection of satellites, and based on the tiny differences in data contained in those signals, it was able to pinpoint my location to precisely the corner of 43 street and Madison avenue, outside of Grand Central Terminal in Manhattan.

To be able to pinpoint my location that precisely, it ultimately relies on clocks in the satellites. Those clocks are in orbit, moving very rapidly, and in a different position in earths gravity well. Space-time is less warped at their elevation than it is here on earth. Relativity predicts that based on that fact, the clocks in those satellites must move at a different rate than clocks here on earth. In order to get precise positions, those clocks need to be adjusted to keep time with the receivers on the surface of the earth.

If relativity – with its interconnected predictions of changes in mass, time, and the warp of space-time – didn’t work, then the corrections made by the GPS satellites wouldn’t be needed. And yet, they are.

There are numerous other examples of this. We’ve observed relativistic effects in many different ways, in many different experiments. Despite what Mr. Bretholt asserts, none of this has been disproven or discarded.

Seventh: Many, many, many scientists disagree with Relativity for these reasons and others, but Physics keeps it as a mainstream idea. It has been violated over and over again in various space programs, and is rarely used in the aerospace industry when serious results are expected. Physics would like to correct Relativity because it doesn’t jive with the Quantum Standard Model, but they can’t conceive how to fix it.

In Quadrature Theory the problem with Relativity is obvious and easily solved. The problem is that the origin and nature of space is not known, nor is the origin and nature of time or gravitation. Einstein did not prove anything about gravitation, norhas anyone since. The “accelerating frame” conjecture is for the convenience of mathematics and sheds no light on the nature of gravitation itself. Quantum Chromo Dynamics, QCD, hypothesizes the “graviton” on the basis of similarly convenient mathematics. Many scientists disagree with such “force carrier” propositions: they are all but silenced by the trends in Physics publishing, however. The “graviton” is, nevertheless, a mathematical fiction similar to Higgs Boson.

Whoops… a couple more bad assumptions, but where did they come from?

Are there any serious scientists who disagree with relativity? Mr. Bretholt doesn’t actually name any. I can’t think of any credible ones. Certainly pretty much all physicists agree that there’s a problem because both relativity and quantum physics both appear to be correct, but they’re not really compatible. It’s a major area of research. But that’s a different thing from saying that scientists “disagree” with or reject relativity. Relativity has passed every experimental test that anyone has been able to devise.

Of course, it’s completely true that Einstein didn’t prove anything about gravity. Science doesn’t deal with proof. Science devises models based on observations. It tries to find the best predictive model of the universe that it can, based on repeated observation. Science can disprove things, by showing that they don’t match our observations of reality, but it can’t prove that a theory is correct. So we can never be sure that our model is correct – just that it does a good job of making predictions that match further observations. Relativity could be completely, entirely, 100% wrong. But given everything we know now, it’s the best predictive theory we have, and nothing we’ve been able to do can disprove it.

Ok, I’ve gone on long enough. If you want to see his last couple of points, go ahead and follow the link to his “article”. After all of this, we still haven’t gotten to anything about what his supposed new theory actually says, and I want to get to just a little bit of that. He’s not telling us much – he wants money to print his book! – but what little he says is on his kickstarter page.

So let me introduce that modification: it’s called Quadrature, or Q. Quadrature arose from Awareness as the original separation of Awareness from itself. This may sound strangely familiar; I elaborate at length about it in BLINK. The Theory of Quadrature develops Q as the Central Generating Principle that creates the Universe step by step. After a total of 12 applications of Quadrature, it folds back on itself like a snake biting its tail. Due to this inevitable closure, the Universe is complete, replete with life, energy and matter, both dark and light. As a necessary consequence of this single Generating Principle, everything in the Universe is ultimately connected through ascending levels of Awareness.

The majesty and mystery of Awareness and its manifestation remains, but this vision puts us inside as co-creative participants. I think you will agree that this is highly desirable from a metaphysical point of view. Quadrature is the mechanism that science has been looking for to unify these two points of view. Q has been foreshadowed in many ways in both physics and metaphysics. As developed in BLINK, Quadrature Theory can serve as a Theory of Everything.

Pretty typical grandiose crackpottery. This looks an awful lot like a variation of Langan’s CTMU. It’s all about awareness! And there’s a simple “mathematical” construct called “quadrature” that makes it all work. Of course, I can’t tell you what quadrature is. No, you need to pay me! Give me money! And then I’ll deign to explain it to you.

To make a long story short, Quadrature Theory supports four essential claims that undermine Relativity, Quantum Mechanics, and Cosmology while placing these disciplines back on a more secure foundation once their erroneous assumptions have been removed. These are:

  1. The origin of space and its nature arise from Quadrature. Space is shown to be strictly rectilinear; space cannot warp under any conditions.
  2. The origin of the Tempic Field and its nature arise from Quadrature. This field facilitates all types of energetic interaction and varies throughout space. The idea of time arises solely from transactions underwritten by the Tempic Field. Therefore, time as we know it here on Earth is a local anomaly, which uniquely affects all interactions including the speed of light. “C,” in fact, is a velocity, and is variable in both speed and direction depending on the gradient of the Tempic Field. Thus, “C” varies drastically off-planet!
  3. Spin is a fundamental operation in space that constitutes the only absolute measurement. Its density throughout space is non-linear and it generates a variable Tempic Field within spinning systems such as atoms, or galaxies. This built-in “time” serves to hold the atom together eternally, and has many other consequences for Quantum Mechanics and Cosmology.
  4. Gravity is also a ringer in physics. Nothing of the fundamental origin of gravity is known, though we know how to use it quite well. Given the consequence of Spin, gravity can be traced to forms that have closed Tempic Fields. The skew electric component of spinning systems will align to create an aggregated, polarized, directional field: gravity.

Pop science, of course, loves to talk about black holes, worm holes, time warps and all manner of the ridiculous in physics. There is much more fascinating stuff than this in my book, and it is completely consistent with what is observable in the Universe. For example, I propose the actual purpose of the black hole and why every galaxy has one. At any rate, perhaps you now have an inkling of why Quadrature Theory is a Revolution Waiting to Happen!

Pure babble, stringing together words in nonsensical ways. As my mantra goes: the worst math is no math. Here he’s arguing that rigorous, well-tested mathematical models are incorrect – because vague reasons.

Vortex Math Returns!

Cranks never give up. That’s something that I’ve learned in my time writing this blog. It doesn’t matter how stupid an idea is. It doesn’t matter how obviously wrong, how profoundly ridiculous. No matter what, cranks will continue to push their ridiculous ideas.

One way that this manifests is the comments on old posts never quite die. Years after I initially write a post, I still have people coming back and trying to share “new evidence” for their crankery. George Shollenberger, the hydrino cranks, the Brown’s gas cranks, the CTMU cranks, they’ve all come back years after a post with more of the same-old, same-old. Most of the time, I just ignore it. There’s nothing to be gained in just rehashing the same old nonsense. It’s certainly not going to convince the cranks, and it’s not going to be interesting to my less insane readers. But every once in a while, something comes along in those comments, something that’s actually new and amusing comes along. Today I’ve got an example of that for you: one of the proponents of Markus Rodin’s “Vortex Math” has returned to tell us the great news!

I have linked Vortex Based Mathematics with Physics and can prove most physics using vortex based mathematics. I am writing an article call “Temporal Physics of Vortex Based Mathematics” here: http://www.vortexspace.org

This is a lovely thing, even without needing to actually look at his article. Just start at the very first line! He claims that he can “prove most of physics”.

Science doesn’t do proof.

What science does is make observations, and then based on those observations produce models of the universe. Then, using that model, it makes predictions, and compares those predictions with further observations. By doing that over and over again, we get better and better models of how the universe works. Science is never sure about anything – because all it can do is check how well the model works. It’s always possible that any model doesn’t describe how things actually work. But it gives us a good approximation, in a way that allows us to understand how things work. Or, not quite how things work, but how we can affect the world by our actions. Our model might not capture what’s really happening – but it’s got predictive power.

To give an example of this: our model of the universe says that the earth orbits the sun, which is orbits the galactic core, which is moving through the universe. It’s possible that this is wrong. You can propose an alternative model in which the earth is the stationary center of the universe, and everything moves around it. As a model, it’s not very attractive, because to make it fit our observations, it requires a huge amount of complexity – it’s a far, far more complex model than our standard one, and it’s much harder to use to make accurate predictions. But it can be made to work, just as well as our standard one. It’s possible that that’s how the universe actually works. I don’t think any reasonable person actually believes that the universe works that way, but it’s possible that our entire model is wrong. Science can’t prove that our model is correct. It can just show that it’s the simplest model that matches our observations.

But Mr. Calhoun claims that he can prove physics. That claim shows that he has no idea of what science is, or what science means. And if he doesn’t understand something that simple, why should we trust him to understand any more?

Ah, but when we take a look at some of his writings… it’s a lovely pile of rubbish. Remember the mantra of this blog? The worst math is no math. Mr. Calhoun’s writing is a splendid example of this. He claims to be doing science, math, and mathematical proofs – but when you actually look at his writing, there’s not a spec of genuine math to be found!

Let’s start with a really quick reminder of what vortex math is. Take the sequence of doubling in natural numbers in base-10. 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, …. If, for each of those numbers, you sum the digits until you get a single digit result, you get: 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, … It turns into a repeated sequence, 1, 2, 4, 8, 7, 5, over and over again. You can do the same thing in the reverse direction, by halving: 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, where the digits sum to 1, 5, 7, 8, 4, 2, 1, 5, …

According to Rodin, this demonstrates something profound. This is the heart of Vortex mathematics: this cycle in the numbers shows that there’s some kind of energy flow that is fundamental to the universe, based on this kind of repeating sequence.

So, how does Mr. Calhoun use this? He thinks that he can connect it to black holes and white holes:

Do not forget that we already learned that black holes suck in matter while “compressing” it; and, on the other side of the black hole is a white hole that then takes the same matter and spits it back out while “de-compressing” the matter. The “magnetic warp” video on Youtube shows the same torus shape Marko had illustrated in his “vortex based mathematics” video [see below]:

You can clearly see the vortex in the center of the torus magnets. This is made possible using two Ferrofluid Hele-Shaw Cells [Hele-Shaw effect]. Here are a few links about using ferrofluid hele-shaw cell to view magnetic fields:

http://en.wikipedia.org/wiki/Hele-Shaw_flow

http://www2.warwick.ac.uk/fac/cross_fac/iatl/ejournal/issues/volume2issue1/snyder/

Here is a quote from a Youtube user about the magnets:

“Walter Rawls, a? scientist who did a great deal of research with Albert Roy Davis, said that he believes at the center of every magnet there is a miniature black hole.”

I have not verified the above statement about Walter Rawls as of yet. However, the above images prove beyond doubt Marko’s torus universe mathematical geometry. Now lets take a look at Marko’s designs:

The pictures look kind-of-like this silly torus thing that Rodin likes to draw: therefore they prove beyond doubt that Rodin’s rubbish is correct! Wow, now that’s a mathematical proof!

It gets worse from there.

The next section is “The Physics of Time”.

If you looked at the Youtube videos of the true motion of the Earth through space you now know that we are literally falling into a black hole that is at the center of the galaxy. The motion of the Earth; all of the rotation and revolution, all of that together is caused by space-time. Time is acually the rate and pattern of the motion of matter as it moves through space. It is the fourth dimension. you have probably heard this if you have studied Einstien theories: “As an object moves faster the rate of its motion [or time] slows down”. Sounds like an oxymoron doesn’t it? Well it not so strange once you understand how the fabric of space-time relates to Vortex Based Mathematics.

Motion of the Earth

The planet Earth rotates approx every twenty-four hours. It makes a complete 360o rotation every twenty-four hours. That amount of time is the frequency of the rate of rotation.

Looking down from the north pole of the Earth, you will see that if we divide the sphere into 36 equal parts the sunrise would have to pass through all of the degrees of the sphere in order to make a complete cycle:

Remember the Earth is a “giant magnet” that is spinning. The electromagnetic field of this “giant magnet” is moving out of the north pole [which is really at the geographic south pole] and going to the south pole [which again is really at the geographic north pole]. This electromagnetic field is moving or spinning [see youtube video at top] according to a frequency or cycle.

I don’t know if you realize this, but matter can be compressed or expanded without it being destroyed. A black hole does not de-molecularize matter then in passing to the white hole reassemble it again. Nothing that is demolecularized can naturally be put back together again. If an object is destroyed then is it destroyed; there is no reassembly. Matter can be however, compressed and decompressed. As you probably know and have heard this before there is an huge amount of distance between the atoms in your body. Like the giant void of space and much like the distances between planets in our solar system; the atomic matter in our bodies is just as similar in the amount of space between each atom.

What fills the spaces between each atom? Well, Its space-time. It is the fabric of the inertia ether that all matter in space moves through. Spacetime or what I call “etherspace” is what I have come to realize as “the space in between the spaces”. This “etherspace” can be compressed and then decompressed. Etherspace can enable all of the matter in your body to be greatly compressed without your body being destroyed; and at the same time functioning as it normally should. The ether space then allows your body to be decompressed again; all the while functioning as it should.

It is the movement of spacetime or “ether space” that is causing the rotation and revolving of the planet we live on. It is also responsible for the motions of all of the bodies in space.

Magnets will, whether great or small, act as engines for etherspace. They pull in etherspace at the south pole and also pump out etherspace at the north pole of the magnet. All magnets do this; the great planet earth all the way to the little magnet that sticks to your refridgerator door. Vortex based mathematics prove all of this. I will show you.

As I stated earlier the Earth is a giant magnet and if we apply the Vortex Based Mathematics to the 10o degree spacings of this “giant magnet” lets see what happens. Now we are going to see the de-compression of space-time eminatiing from the true north pole of the giant magnet of the Earth. Let’s deploy a doubling circuit to the spacings of the planet. We will start at 0o and go all the way to 360o .

Calhoun certainly shows that he’s a worthy inheritor of the mantle of Rodin. Rodin’s entire rubbish is really based on taking a fun property of our particular base-10 numerical notation, and without any good reason, believing that it must be a profound fundamental property of the universe. Calhoun takes two arbitrary things: the 360 degree conventional angle measurement, and the 24 hour day, and likewise, without any good reason, without even any argument, believes that they are fundamental properties of the universe.

Where does the 24 hour day come from? I did a bit of research, and there are a couple of possible arguments. It appears to date back to the old empire of Egypt. The argument that I found most convincing is based on how the Egyptians counted on their hands. They did a lot of things in base-12, because using your thumb to point out the joints of the fingers on your hand, you can count to 12. The origin of our base-10 is based on using fingers to count; base-12 is similar, but based on a slightly different way of counting on your fingers. Using base-12, they decided to describe time in terms of counting periods of light and darkness: 12 bright periods, 12 dark ones. There’s nothing scientific or fundamental about it: it’s an arbitrary way of measuring time. The Greeks adopted it from the Egyptians; the Romans adopted it from the Greeks; and we adopted it from the Romans. There is no fundamental reason why it is the one true correct way of measuring time.

Similarly, the 360 degree system of angular measure is not the least bit fundamental. It dates back to the Babylonians. In writing, the Babylonions used a base-60 system, instead of our base-10. In their explorations of geometry, they observed that if you inscribed a hexagon inside of a circle, each of the segments of the hexagon was the same length as the radius of the circle. So they measured an angle in terms of which segment of the inscribed hexagon it crossed. Within those sig segments, they divided them into sixty sections, because what else would people who use base-60 use? And then to subdivide those, they used 60 again. The 360 degree system is a random historical accident, not a profound truth.

I don’t want to get too far off track (or too farther off track), but: In fact, when you’re talking about angles, there is a fundamental measurement, called a radian. Whenever you do math using angles, you end up needing to introduce a conversion factor which converts your angle into radians.

Anyway – this rubbish about the 24 hour day and 360 degree circle are what passes for math in Calhoun’s world. This is as close to math or to correctness that Calhoun gets.

What’s even worse is his babble about black holes and white holes.

Both black and white holes are theoretical predictions of relativity. The math involved is not simple: it’s based on Einstein’s field equations from general relativity:

 R_{munu} - frac{1}{2}g_{munu}R + g_{mueta}Lambda = frac{8pi G}{c^4}T_{munu}

In this equation, the subscripted variables are all symmetric 4×4 tensors. Black and white holes are “solutions” to particular configurations of those tensors. This is not elementary math, not by a long-shot. But if you want to really talk about black and white holes, this is how you do it.

Translating from the math into prose is always a problem, because the prose is far less precise, and it’s inevitably misleading. No matter how well you think you understand based on the prose, you don’t understand the concept, because you haven’t been told enough, in a precise enough way, to actually understand it.

That said, the closest I can come is the following.

We’ll start with black holes. Black holes are much easier to understand: put enough mass into a small enough area of space, and you wind up with a boundary line, called the event horizon, where anything that crosses that boundary, no matter what – even massless stuff like light – can never escape. We believe, based on careful analysis, that we’ve observed black holes in our universe. (Or rather, we’ve seen evidence that they exist; you can’t actually see a black hole; but you can see its effects.) We call a black hole a singularity, because nothing beyond the event horizon is visible – it looks like a hole in space. But it isn’t: it’s got a mass, which we can measure. Matter goes in to a black hole, and crosses the event horizon. We can no longer see the matter. We can’t observe what happens to it once it crosses the horizon. But we know it’s still there, because we can observe the mass of the hole, and it increases as matter enters.

(It was pointed out to me on twitter that my explanation of the singularity is wrong. See what happens when you try to explain mathematical stuff non-mathematically?)

White holes are a much harder idea. We’ve never seen one. In fact, we don’t really think that they can exist in our universe. In concept, they’re the opposite of a black hole: they are a region with a boundary than nothing can ever cross. In a black hole, you can’t cross the boundary an escape; in a white hole, once something crosses the boundary, it can’t ever re-enter. White holes only exist in a strange conceptual case, called an eternal black hole – that is, a black hole that has been there forever, which was never formed by gravitational collapse.

There are some folks who’ve written speculative work based on the solutions to the white hole field equations that suggest that our universe is the result of a white hole, inside of the event horizon of a black hole in an enclosing universe. But in this solution, the white hole exists for an infinitely small period of time: all of the matter in it ejects into a new space-time realm in an instant. There’s no actual evidence for this, beyond the fact that it’s an interesting way of interpreting a solution to the field equations.

All of this is a long-winded way of saying that when it comes to black holes, Calhoun is talking out his ass. A black hole is not one end of a tunnel that leads to a white hole. If you actually do the math, that doesn’t work. A black hole does not “compress” matter and pass it to a white hole which decompresses it. A black hole is just a huge clump of very dense matter; when something crosses the event horizon of a black hole, it just becomes part of that clump of matter.

His babble about magnetism is similar: we’ve got some very elegant field equations, called Maxwell’s equations, which describe how magnetism and electric fields work. It’s beautiful, if complex, mathematics. And they most definitely do not describe a magnet as something that “pumps eitherspace from the south pole to the north pole”.

There’s no proof here. And there’s no math here. There’s nothing here but the midnight pot-fueled ramblings of a not particularly bright sci-fi fan, who took some wonderful stories, and believed that they were based on something true.

Infinite Cantor Crankery

I recently got yet another email from a Cantor crank.

Sadly, it’s not a particularly interesting letter. It contains an argument that I’ve seen more times than I can count. But I realized that I don’t think I’ve ever written about this particular boneheaded nonsense!

I’m going to paraphrase the argument: the original is written in broken english and is hard to follow.

  • Cantor’s diagonalization creates a magical number (“Cantor’s number”) based on an infinitely long table.
  • Each digit of Cantor’s number is taken from one row of the table: the Nth digit is produced by the Nth row of the table.
  • This means that the Nth digit only exists after processing N rows of the table.
  • Suppose it takes time t to get the value of a digit from a row of the table.
  • Therefore, for any natural number N, it takes N*t time to get the first N digits of Cantor’s number.
  • Any finite prefix of Cantor’s number is a rational number, which is clearly in the table.
  • The full Cantor’s number doesn’t exist until an infinite number of steps has been completed, at time &infinity;*t.
  • Therefore Cantor’s number never exists. Only finite prefixes of it exist, and they are all rational numbers.

The problem with this is quite simple: Cantor’s proof doesn’t create a number; it identifies a number.

It might take an infinite amount of time to figure out which number we’re talking about – but that doesn’t matter. The number, like all numbers, exists, independent of
our ability to compute it. Once you accept the rules of real numbers as a mathematical framework, then all of the numbers, every possible one, whether we can identify it, or describe it, or write it down – they all exist. What a mechanism like Cantor’s diagonalization does is just give us a way of identifying a particular number that we’re interested in. But that number exists, whether we describe it or identify it.

The easiest way to show the problem here is to think of other irrational numbers. No irrational number can ever be written down completely. We know that there’s got to be some number which, multiplied by itself, equals 2. But we can’t actually write down all of the digits of that number. We can write down progressively better approximations, but we’ll never actually write the square root of two. By the argument above against Cantor’s number, we can show that the square root of two doesn’t exist. If we need to create the number by writing down all af its digits,s then the square root of two will never get created! Nor will any other irrational number. If you insist on writing numbers down in decimal form, then neither will many fractions. But in math, we don’t create numbers: we describe numbers that already exist.

But we could weasel around that, and create an alternative formulation of mathematics in which all numbers must be writeable in some finite form. We wouldn’t need to say that we can create numbers, but we could constrain our definitions to get rid of the nasty numbers that make things confusing. We could make a reasonable argument that those problematic real numbers don’t really exist – that they’re an artifact of a flaw in our logical definition of real numbers. (In fact, some mathematicians like Greg Chaitin have actually made that argument semi-seriously.)

By doing that, irrational numbers could be defined out of existence, because they
can’t be written down. In essence, that’s what my correspondant is proposing: that the definition of real numbers is broken, and that the problem with Cantor’s proof is that it’s based on that faulty definition. (I don’t think that he’d agree that that’s what he’s arguing – but either numbers exist that can’t be written in a finite amount of time, or they don’t. If they do, then his argument is worthless.)

You certainly can argue that the only numbers that should exist are numbers that can be written down. If you do that, there are two main paths. There’s the theory of computable numbers (which allows you to keep π and the square roots), and there’s the theory of rational numbers (which discards everything that can’t be written as a finite fraction). There are interesting theories that build on either of those two approaches. In both, Cantor’s argument doesn’t apply, because in both, you’ve restricted the set of numbers to be a countable set.

But that doesn’t say anything about the theory of real numbers, which is what Cantor’s proof is talking about. In the real numbers, numbers that can’t be written down in any form do exist. Numbers like the number produced by Cantor’s diagonalization definitely do. The infinite time argument is a load of rubbish because it’s based on the faulty concept that Cantor’s number doesn’t exist until we create it.

The interesting thing about this argument to be, is its selectivity. To my correspondant, the existence of an infinitely long table isn’t a problem. He doesn’t think that there’s anything wrong with the idea of an infinite process creating an infinite table containing a mapping between the natural numbers and the real numbers. He just has a problem with the infinite process of traversing that table. Which is really pretty silly when you think about it.

Speed-Crankery

A fun game to play with cranks is: how long does it take for the crank to contradict themselves?

When you’re looking at a good example of crankery, it’s full of errors. But for this game, it’s not enough to just find an error. What we want is for them to say something so wrong that one sentence just totally tears them down and demonstrates that what they’re doing makes no sense.

“The color of a clear sky is green” is, most of the time, wrong. If a crank makes some kind of argument based on the alleged fact that the color of a clear daytime sky is green, the argument is wrong. But as a statement, it’s not nonsensical. It’ just wrong.

On th other hand, “The color of a clear sky is steak frite with bernaise sauce and a nice side of roasted asparagus”, well… it’s not even wrong. It’s just nonsense.

Today’s crank is a great example of this. If, that is, it’s legit. I’m not sure that this guy is serious. I think this might be someone playing games, pretending to be a crank. But even if it is, it’s still fun.

About a week ago, I got en mail titled “I am a Cantor crank” from a guy named Chris Cuellar. The contents were:

…AND I CHALLENGE YOU TO A DUEL!! En garde!

Haha, ok, not exactly. But you really seem to be interested in this stuff. And so am I. But I think I’ve nailed Cantor for good this time. Not only have I come up with algorithms to count some of these “uncountable” things, but I have also addressed the proofs directly. The diagonalization argument ends up failing spectacularly, and I believe I have a good explanation for why the whole thing ends up being invalid in the first place.

And then I also get to the power set of natural numbers… I really hope my arguments can be followed. The thing I have to emphasize is that I am working on a different system that does NOT roll up cardinality and countability into one thing! As it will turn out, rational numbers are bigger than integers, integers are bigger than natural numbers… but they are ALL countable, nonetheless!

Anyway, I had started a little blog of my own a while ago on these subjects. The first post is here:
http://laymanmath.blogspot.com/2012/09/the-purpose-and-my-introduction.html

Have fun… BWAHAHAHA

So. We’ve got one paragraph of intro. And then everything crashes and burns in an instant.

“Rational numbers are bigger than integers, integers are bigger than natural numbers, but they are all countable”. This is self-evident rubbish. The definition of “countable” say that an infinite set I is countable if, and only if, you can create a one-to-one mapping between the members of I and the natural numbers. The definition of cardinality says that if you can create a one-to-one mapping between two sets, the sets are the same size.

When Mr. Cuellar says that the set of rational numbers is bigger that the set of natural numbers, but that they are still countable… he’s saying that there is not a one-to-one mapping between the two sets, but that there is a one-to-one mapping between the two sets.

Look – you don’t get to redefine terms, and then pretend that your redefined terms mean the same thing as the original terms.

If you claim to be refuting Cantor’s proof that the cardinality of the real numbers is bigger than the cardinality of the natural numbers, then you have to use Cantor’s definition of cardinality.

You can change the definition of the size of a set – or, more precisely, you can propose an alternative metric for how to compare the sizes of sets. But any conclusions that you draw about your new metric are conclusions about your new metric – they’re not conclusions about Cantor’s cardinality. You can define a new notion of set size in which all infinite sets are the same size. It’s entirely possible to do that, and to do that in a consistent way. But it will say nothing about Cantor’s cardinality. Cantor’s proof will still work.

What my correspondant is doing is, basically, what I did above in saying that the color of the sky is steak frites. I’m using terms in a completely inconsistent meaningless way. Steak frites with bernaise sauce isn’t a color. And what Mr. Cuellar does is similar: he’s using the word “cardinality”, but whatever he means by it, it’s not what Cantor meant, and it’s not what Cantor’s proof meant. You can draw whatever conclusions you want from your new definition, but it has no bearing on whether or not Cantor is correct. I don’t even need to visit his site: he’s demonstrated, in record time, that he has no idea what he’s doing.

The Gravitational Force of Rubbish

Imagine, for just a moment, that you were one a group of scientists that had proven the most important, the most profound, the most utterly amazing scientific discovery of all time. Where would you publish it?

Maybe Nature? Science? Or maybe you’d prefer to go open-access, and go with PLOS ONE? Or more mainstream, and send a press release to the NYT?

Well, in the case of today’s crackpots, they bypassed all of those boring journals. They couldn’t be bothered with a pompous rag like the Times. No, they went for the really serious press: America Now with Leeza Gibbons.

What did they go to this amazing media outlet to announce? The most amazing scientific discovery of all time: gravity is an illusion! There’s no gravity. In fact, not just is there no gravity, but all of that quantum physics stuff? It’s utter rubbish. You don’t need any of that complicated stuff! No – you need only one thing: the solar wind.

A new theory on the forces that control planetary orbit refutes the 400-year old assumptions currently held by the scientific community. Scientific and engineering experts Gerhard and Kevin Neumaier have established a relationship between solar winds and a quantized order in both the position and velocity of the solar system’s planets, and movement at an atomic level, with both governed by the same set of physics.

The observations made bring into question the Big Bang Theory, the concept of black holes, gravitational waves and gravitons. The Neumaiers’ paper, More Than Gravity, is available for review at MoreThanGravity.com

Pretty damned impressive, huh? So let’s follow their instructions, and go over to their website.

Ever since humankind discovered that the Earth and the planets revolved around the Sun, there was a question about what force was responsible for this. Since the days of Newton, science has held onto the notion that an invisible force, which we have never been able to detect, controls planetary motion. There are complicated theories about black holes that have never been seen, densities of planets that have never been measured, and subatomic particles that have never been detected.

However, it is simpler than all of that and right in front of us. The Sun and the solar wind are the most powerful forces in our solar system. They are physically moving the planets. In fact, the solar wind spins outward in a spiral at over a million miles per hour that controls the velocity and distances that planets revolve around the Sun. The Sun via the solar wind quantizes the orbits of the planets – their position and speed.

The solar wind also leads to the natural log and other phenomenon from the very large scale down to the atomic level. This is clearly a different idea than the current view that has been held for over 400 years. We have been working on this for close 50 years and thanks to satellite explorations of space have data that just was not available when theories long ago were developed. We think that we have many of the pieces but there are certainly many more to be found. We set this up as a web site, rather as some authoritative book so that there would be plenty of opportunity for dialog. The name for this web site, www.MorethanGravity.com was chosen because we believe there is far more to this subject than is commonly understood. Whether you are a scientific expert in your field or just have a general interest in how our solar system works, we appreciate your comments.

See, it’s all about the solar wind. There’s no such thing as gravity – that’s just nonsense. The sun produces the solar wind, which does absolutely everything. The wind comes out of the sun, and spirals out from the sun. That spiral motion has eddies in it an quantized intervals, and that’s where the planets are. Amazing, huh?

Remember my mantra: the worst math is no math. This is a beautiful demonstration
of that.

Of course… why does the solar wind move in a spiral? Everything we know says that in the absence of a force, things move in a straight line. It can’t be spiraling because of gravity, because there is no gravity. So why does it spiral? Our brilliant authors don’t bother to say. What makes it spiral, instead of just move straight? Mathematically, spiral motion is very complicated. It requires a centripetal force which is smaller than the force that would produce an orbit. Where’s that force in this framework? There isn’t any. They just say that that’s how the solar wind works, period. There are many possible spirals, with different radial velocities – which one does the solar wind follow according to this, and why? Again, no answer from the authors.

Or… why is the sun producing the solar wind at all? According to those old, stupid theories that this work of brilliance supercedes, the sun produces a solar wind because it’s fusing hydrogen atoms into helium. That’s happening because gravity is causing the atoms of the sun to be compressed together until they fuse. Without gravity, why is fusion happening at all? And given that it’s happening, why does the sun not just explode into a supernova? We know, from direct observation, that the energy produced by fusion creates an outward force. But gravity can’t be holding the sun together – so why is the sun there at all? Still, no answers.

They do, eventually, do some math. One of the big “results” of this hypothesis is about the “quantization” of the orbits of planets around the sun. They were able to develop a simple equation which predicts the locations where planets could exist in their “solar wind” system.

Let’s start with the distance between the planets and the Sun. We guessed that if the solar system was like an atom, that planetary distance would be quantized. This is to say that we thought that the planets would have definite positions and that they would be either in the position or it would be empty. In a mathematical sense, this would be represented by a numerical integer ordering (0,1,2,3,…). If the first planet, Mercury was in the 0 orbital, how would the rest of the planets line up? Amazingly well we found.

If we predict the distance from the surface of the Sun to each planet in this quantized approach, the results are astounding. If D equals the mean distance to the surface of the Sun, and d0 as the distance to Mercury, we can describe the relationship that orders the planets mathematically as:

 D=d_0 S^n

Each planetary position can be predicted from this equation in a simple calculation as we increase the integer (or planet number) n. S is the solar factor, which equals 1.387. The solar factor is found in the differential rotation of the Sun and the profile of the solar wind which we will discuss later.

Similar to the quantized orbits that exist within an atom, the planetary bodies are either there or not. Mercury is in the zero orbital. The next orbital is missing a planet. The second, third, and fourth orbitals are occupied by Venus, Earth, and Mars respectively. The fifth orbital is missing. The sixth orbital is filled with Ceres. Ceres is described as either the largest of all asteroids or a minor planet (with a diameter a little less than half that of Pluto), depending on who describes it. Ceres was discovered in 1801 as astronomers searched for the missing planets that the Titius-Bode Law predicted would exist.

So. What they found was an exponential equation which products very approximate versions of the size of first 8 planets’ orbits, as well as a couple of missing ones.

This is, in its way, interesting. Not because they found anything, but rather because they think that this is somehow profound.

We’ve got 8 data points (or 9, counting the asteroid belt). More precisely, we have 9 ranges, because all of the orbits are elliptical,but the authors of this junk are producing a single number for the size of the orbits, and they can declare success if their number falls anywherewithin the range from perihelion to aphelion in each of the orbits.

It would be shocking if there weren’t any number of simple equations that described exactly the 9 data points of the planet’s orbits.

But they couldn’t even make that work directly. They only manage to get a partial hit – getting an equation that hits the right points, but which also generates a bunch of misses. There’s nothing remotely impressive about that.

From there, they move on to the strawmen. For example, they claim that their “solar wind” hypothesis explains why the planets all orbit in the same direction on the same plane. According to them, if orbits were really gravitational, then planets would orbit in random directions on random planes around the sun. But their theory is better than gravity, because it says why the planets are in the same plane, and why they’re all orbiting in the same direction.

The thing is, this is a really stupid argument. Why are the planets in the same plane, orbiting in the same direction? Because the solar system was formed out of a rotating gas cloud. There’s a really good, solid, well-supported explanation of why the planets exist, and why they orbit the sun the way they do. Gravity doesn’t explain all of it, but gravity is a key piece of it.

What they don’t seem to understand is how amazingly powerful the theory of gravity is as a predictive tool. We’ve sent probes to the outer edges of the solar system. To do that, we didn’t just aim a rocket towards Jupiter and fire it off. We’ve done things like the Cassini probe, where we launched a rocket towards Venus. It used the gravitational field of Venus twice to accelerate it with a double-slingshot maneuver, and send it back towards earth, using the earth’s gravity to slingshot it again, to give it the speed it needed to get to Jupiter.

This wasn’t a simple thing to do. It required an extremely deep understanding of gravity, with extremely accurate predictions of exactly how gravity behaves.

How do our brilliant authors answer this? By handwaving. The extend of their response is:

Gravitational theory works for things like space travel because it empirically measures the force of a planet, rather than predicting it.

That’s a pathetic handwave, and it’s not even close to true. The gravitational slingshot is a perfect answer to it. A slingshot doesn’t just use some “empirically measured” force of a planet. It’s a very precise prediction of what the forces will be at different distances, how that force will vary, and what effects that force will have.

They do a whole lot more handwaving of very much the same order. Pure rubbish.

Genius Continuum Crackpottery

This post was revised on June 25, 2014. Mr. Wince has been threatening to sue me for libel. I don’t think that that’s right, but one thing that he’s complained about is correct. I called him a high school dropout. In his article, Wince refers to “when he dropped out of high school”, but in the same sentence, he goes on to say that he dropped out to attend community college. Calling him a dropout is a cheap shot, which I shouldn’t have included, and for that, I apologize. I’ve removed the line from the post. I still think that his math is laughably wrong, but I shouldn’t have called him a dropout.

There’s a lot of mathematical crackpottery out there. Most of it is just pointless and dull. People making the same stupid mistakes over and over again, like the endless repetitions of the same-old supposed refutations of Cantor’s diagonalization.

After you eliminate that, you get reams of insanity – stuff which
is simply so incoherent that it doesn’t make any sense. This kind of thing is usually word salad – words strung together in ways that don’t make sense.

After you eliminate that, sometimes, if you’re really lucky, you’ll come accross something truly special. Crackpottery as utter genius. Not genius in a good way, like they’re an outsider genius who discovered something amazing, but genius in the worst possible way, where someone has created something so bizarre, so overwrought, so utterly ridiculous that it’s a masterpiece of insane, delusional foolishness.

Today, we have an example of that: Existics!. This is a body of work by a guy named Gavin Wince with truly immense delusions of grandeur. Pomposity on a truly epic scale!

I’ll walk you through just a tiny sample of Mr. Wince’s genius. You can go look at his site to get more, and develop a true appreciation for this. He doesn’t limit himself to mere mathematics: math, physics, biology, cosmology – you name it, Mr. Wince has mastered it and written about it!

The best of his mathematical crackpottery is something called C3: the Canonized Cardinal Continuum. Mr. Wince has created an algebraic solution to the continuum hypothesis, and along the way, has revolutionized number theory, algebra, calculus, real analysis, and god only knows what else!

Since Mr. Wince believes that he has solved the continuum hypothesis. Let me remind you of what that is:

  1. If you use Cantor’s set theory to explore numbers, you get to the uncomfortable result that there are different sizes of infinity.
  2. The smallest infinite cardinal number is called ℵ0,
    and it’s the size of the set of natural numbers.
  3. There are cardinal numbers larger than ℵ0. The first
    one larger than ℵ0 is ℵ1.
  4. We know that the set of real numbers is the size of the powerset
    of the natural numbers – 20 – is larger than the set of the naturals.
  5. The question that the continuum hypothesis tries to answer is: is the size
    of the set of real numbers equal to ℵ1? That is, is there
    a cardinal number between ℵ0 and |20|?

The continuum hypothesis was “solved” in 1963. In 1940, Gödel showed that you couldn’t disprove the continuum hypothesis using ZFC. In 1963,
another mathematician named Paul Cohen, showed that it couldn’t be proven using ZFC. So – a hypothesis which is about set theory can be neither proven nor disproven using set theory. It’s independent of the axioms of set theory. You can choose to take the continuum hypothesis as an axiom, or you can choose to take the negation of the continuum hypothesis as an axiom: either choice is consistent and valid!

It’s not a happy solution. But it’s solved in the sense that we’ve got a solid proof that you can’t prove it’s true, and another solid proof that you can’t prove it’s false. That means that given ZFC set theory as a basis, there is no proof either way that doesn’t set it as an axiom.

But… Mr. Wince knows better.

The set of errors that Wince makes is really astonishing. This is really seriously epic crackpottery.

He makes it through one page without saying anything egregious. But then he makes up for it on page 2, by making multiple errors.

First, he pulls an Escultura:

x1 = 1/21 = 1/2 = 0.5
x2 = 1/21 + 1/22 = 1/2 + 1/4 = 0.75
x3 = 1/21 + 1/22 + 1/23 = 1/2 + 1/4 + 1/8 = 0.875

At the end or limit of the infinite sequence, the final term of the sequence is 1.0

In this example we can see that as the number of finite sums of the sequence approaches the limit infinity, the last term of the sequence equals one.
xn = 1.0
If we are going to assume that the last term of the sequence equals one, it can be deduced that, prior to the last term in the sequence, some finite sum in the series occurs where:
xn-1 = 0.999…
xn-1 = 1/21 + 1/22 + 1/23 + 1/24 + … + 1/2n-1 = 0.999…
Therefore, at the limit, the last term of the series of the last term of the sequence would be the term, which, when added to the sum 0.999… equals 1.0.

There is no such thing as the last term of an infinite sequence. Even if there were, the number 0.999…. is exactly the same as 1. It’s a notational artifact, not a distinct number.

But this is the least of his errors. For example, the first paragraph on the next page:

The set of all countable numbers, or natural numbers, is a subset of the continuum. Since the set of all natural numbers is a subset of the continuum, it is reasonable to assume that the set of all natural numbers is less in degree of infinity than the set containing the continuum.

We didn’t need to go through the difficult of Cantor’s diagonalization! We could have just blindly asserted that it’s obvious!

or actually… The fact that there are multiple degrees of infinity is anything but obvious. I don’t know anyone who wasn’t surprised the first time they saw Cantor’s proof. It’s a really strange idea that there’s something bigger than infinity.

Moving on… the real heart of his stuff is built around some extremely strange notions about infinite and infinitessimal values.

Before we even look at what he says, there’s an important error here
which is worth mentioning. What Mr. Wince is trying to do is talk about the
continuum hypothesis. The continuum hypothesis is a question about the cardinality of the set of real numbers and the set of natural numbers.
Neither infinites nor infinitessimals are part of either set.

Infinite values come into play in Cantor’s work: the cardinality of the natural numbers and the cardinality of the reals are clearly infinite cardinal numbers. But ℵ0, the smallest infinite cardinal, is not a member of either set.

Infinitessimals are fascinating. You can reconstruct differential and integral calculus without using limits by building in terms of infinitessimals. There’s some great stuff in surreal numbers playing with infinitessimals. But infinitessimals are not real numbers. You can’t reason about them as if they were members of the set of real numbers, because they aren’t.

Many of his mistakes are based on this idea.

For example, he’s got a very strange idea that infinites and infinitessimals don’t have fixed values, but that their values cover a range. The way that he gets to that idea is by asserting the existence
of infinity as a specific, numeric value, and then using it in algebraic manipulations, like taking the “infinityth root” of a real number.

For example, on his way to “proving” that infinitessimals have this range property that he calls “perambulation”, he defines a value that he calls κ:

 sqrt[infty]{infty} = 1 + kappa

In terms of the theory of numbers, this is nonsense. There is no such thing as an infinityth root. You can define an Nth root, where N is a real number, just like you can define an Nth power – exponents and roots are mirror images of the same concept. But roots and exponents aren’t defined for infinity, because infinity isn’t a number. There is no infinityth root.

You could, if you really wanted to, come up with a definition of exponents that that allowed you to define an infinityth root. But it wouldn’t be very interesting. If you followed the usual pattern for these things, it would be a limit: sqrt[infty]{x}  lim_{nrightarrowinfty} sqrt[n]{x}. That’s clearly 1. Not 1 plus something: just exactly 1.

But Mr. Cringe doesn’t let himself be limited by silly notions of consistency. No, he defines things his own way, and runs with it. As a result, he gets a notion that he calls perambulation. How?

Take the definition of κ:

 sqrt[infty]{infty} = 1 + kappa

Now, you can, obviously, raise both sides to the power of infinity:

infty = (1 + kappa)^{infty}

Now, you can substitute ℵ0 for infty. (Why? Don’t ask why. You just can.) Then you can factor it. His factoring makes no rational sense, so I won’t even try to explain it. But he concludes that:

  • Factored and simplified one way, you end up with (κ+1) = 1 + x, where x is some infinitessimal number larger than κ. (Why? Why the heck not?)
  • Factored and simplified another way, you end up with (κ+1) = ℵ
  • If you take the mean of of all of the possible factorings and reductions, you get a third result, that (κ+1) = 2.

He goes on, and on, and on like this. From perambulation to perambulating reciprocals, to subambulation, to ambulation. Then un-ordinals, un-sets… this is really an absolute masterwork of utter insane crackpottery.

Do download it and take a look. It’s a masterpiece.

Pi-day randomness

One of my twitter friends was complaining about something that’s apparently making the rounds of Facebook for π-day. It annoyed me sufficiently to be worth ranting about a little bit.

Why isn’t π rational if π=circumference/diameter, and both measurements are plainly finite?

There’s a couple of different ways of interpreting this question.

The stupidest way of interpreting it is that the author didn’t have any clue of what an irrational number is. An irrational number is a number which cannot be written as a ratio of two integers. Another way of saying essentially the same thing is that there’s no way to create a finite representation of an irrational number. I’ve seen people get this wrong before, where they confuse not having a finite representation with not being finite.

π doesn’t have a finite representation. But it’s very clearly finite – it’s less that 3 1/4, which is obviously not infinite. Anyone who can look at π, and be confused about whether or not it’s finite is… well… there’s no nice way to say this. If you think that π isn’t finite, you’re an idiot.

The other way of interpreting this statement is less stupid: it’s a question of measurement. If you have a circular object in real life, then you can measure the circumference and the diameter, and do the division on the measurements. The measurements have finite precision. So how can the ratio of two measurements with finite precision be irrational?

The answer is, they can’t. But perfect circles don’t exist in the real world. Many mathematical concepts don’t exist in the real world. In the real world, there’s no such thing as a mathematical point, no such thing as a perfect line, no such thing as perfectly parallel lines.

π isn’t a measured quantity. It’s a theoretical quantity, which can be computed analytically from the theoretical properties derived from the abstract properties of an ideal, perfect circle.

No “circle” in the real world has a perfect ratio of π between its circumference and its diameter. But the theoretical circle does.

The facebook comments on this get much worse than the original question. One in particular really depressed me.

Just because the measurements are finite doesn’t mean they’re rational.
Pi is possibly rational, we just haven’t figured out where it ends.

Gah, no!

We know an awful lot about π. And we know, with absolute, 100% perfect certainty that π never ends.

We can define π precisely as a series, and that series makes it abundantly clear that it never ends.

pi = frac{4}{1} - frac{4}{3} + frac{4}{5} - frac{4}{7} + frac{4}{9} ...

That series goes on forever. π can’t ever end, because that series never ends.

Just for fun, here’s a little snippet of Python code that you can play with. You can see how, up to the limits of your computer’s floating point representation, that a series computation of π keeps on going, changing with each additional iteration.

def pi(numiter):
  val = 3.0
  sign = 1
  for i in range(numiter):
    term = ((i+1)*2) * ((i+1)*2 + 1) * ((i+1) *2 + 2)
    val = val + sign*4.0/term
    sign = sign * -1
  return val

New Dimensions of Crackpottery

I have, in the past, ranted about how people abuse the word “dimension”, but it’s been a long time. One of my followers on twitter sent me a link to a remarkable piece of crackpottery which is a great example of how people simply do not understand what dimensions are.

There are several ways of defining “dimension” mathematically, but they all come back to one basic concept. A dimension an abstract concept of a direction. We can use the number of dimensions in a space as a way of measuring properties of that space, but those properties all come back to the concept of direction. A dimension is neither a place nor a state of being: it is a direction.

Imagine that you’re sitting in an abstract space. You’re at one point. There’s another point that I want you to go to. In order to uniquely identify your destination, how many directions do I need to mention?

If the space is a line, you only need one: I need to tell you the distance. There’s only one possible direction that you can go, so all I need to tell you is how far. Since you only need one direction, the line is one-dimensional.

If the line is a plane, then I need to tell you two things. I could do that by saying “go right three steps then up 4 steps”, or I could say “turn 53 degrees clockwise, and then walk forward 5 steps.” But there’s no way I can tell you how to get to your destination with less than two directions. You need two directions, so the plane is two dimensional.

If the space is the interior of a cube, then you’ll need three directions, which means that the cube is three dimensional.

On to the crackpottery!

E=mc2 represents a translation across dimensions, from energy to matter.

No, it does not. Energy and matter are not dimensions. e=mc^2 is a statement about the fundamental relation between energy and matter, not a statement about dimensions. Our universe could be 2 dimensional, 3 dimensional, 4 dimensional, or 22 dimensional: relativity would still mean the same thing, and it’s not a statement about a “translation across dimensions”.

Energy can travel at the speed of light, and as Special Relativity tells us, from the perspective of light speed it takes no time to travel any distance. In this way, energy is not bound by time and space the way matter is. Therefore, it is in a way five-dimensional, or beyond time.

Bzzt, no.

Energy does not travel. Light travels, and light can transmit energy, but light isn’t energy. Or, from another perspective, light is energy: but so is everything else. Matter and energy are the same thing.

From the perspective of light speed time most certainly does pass, and it does take plenty of time to travel a distance. Light takes roughly 6 minutes to get from the sun to the earth. What our intrepid author is trying to talk about here is the idea of time dilation. Time dilation describes the behavior of particles with mass when they move at high speeds. As a massive particle moves faster and approaches the speed of light, the mass of the particle increases, and the particle’s experience of time slows. If you could accelerate a massive particle to the speed of light, its mass would become infinite, and time would stop for the particle. “If” is the key word there: it can’t. It would require an infinite amount of energy to accelerate it to the speed of light.

But light has no mass. Relativity describes a strange property of the universe, which is hard to wrap your head around. Light always moves at the same speed, no matter your perspective. Take two spacecraft in outer space, which are completely stationary relative to each other. Shine a laser from one, and measure how long it takes for the light to get to the other. How fast is it going? Roughly 186,000 miles/second. Now, start one ship moving away from the other at half the speed of light. Repeat the experiment. One ship is moving away from the other at a speed of 93,000 miles/second. From the perspective of the moving ship, how fast is the light moving away from it towards the other ship? 186,000 miles/second. From the perspective of the stationary ship, how fast is the laser light approaching it? 186,000 miles/second.

It’s not that there’s some magic thing about light that makes it move while time stops for it. Light is massless, so it can move at the speed of light. Time dilation doesn’t apply because it has no mass.

But even if that weren’t the case, that’s got nothing to do with dimensionality. Dimensionality is a direction: what does this rubbish have to do with the different directions that light can move in? Absolutely nothing: the way he’s using the word “dimension” has nothing to do with what dimensions mean.

All “objects” or instances of matter are time-bound; they change, or die, or dissolve, or evaporate. Because they are subject to time, objects can be called four-dimensional.

Nope.

Everything in our universe is subject to time, because time is one of the dimensions in our universe. Time is a direction that we move. We don’t have direct control over it – but it’s still a direction. When and where did I write this blog post compared to where I am when you’re reading it? The only way you can specify that is by saying how far my position has changed in four directions: 3 spatial directions, and time. Time is a dimension, and everything in our universe needs to consider it, because you can’t specify anything in our universe without all four dimensions.

The enormous energy that can be released from a tiny object (as in an atomic bomb) demonstrates the role dimensions play in constructing reality.

No: the enormous energy that can be released from a tiny object demonstrates the fact that a small quantity of matter is equivalent to a large quantity of energy. As you’d expect if you look at that original equation: e=mc^2. A gram of mass – something the size of a paperclip – is equivalent to about 25 million kilowatt-hours of energy – or more than the total yearly energy use of 1,200 average americans. That’s damned impressive and profound, without needing to draw in any mangled notions of dimensions or magical dimensional powers.

Higher dimensions are mind-blowingly powerful; even infinitely so. Such power is so expansive that it can’t have form, definition, or identity, like a ball of uranium or a human being, without finding expression in lower dimensions. The limitations of time and space allow infinite power to do something other than constantly annihilate itself.

Do I even need to respond to this?

Einstein’s equation E=mc2 bridges the fourth and the fifth dimensions, expressed as matter and energy. Imagine a discovery that bridges expressions of the fifth and sixth dimensions, such as energy and consciousness. Consciousness has the five-dimensional qualities of energy, but it can’t be “spent” in the way energy can because it doesn’t change form the way energy does. Therefore, it’s limitless.

And now we move from crackpottery to mysticism. Einstein’s mass-energy equation doesn’t bridge dimensions, and dimensionality has nothing do with mass-energy equivalence. And now our crackpot friend suddenly throws in another claim, that consciousness is the sixth dimension? Or consciousness is the bridge between the fifth and sixth dimensions? It’s hard to figure out just what he’s saying here, except for the fact that it’s got nothing to do with actual dimensions.

Is there a sixth dimension? Who knows? According to some modern theories, our universe actually has many more than the 4 dimensions that we directly experience. There could be 6 or 10 or 20 dimensions. But if there are, those dimensions are just other directions that things can move. They’re not abstract concepts like “consciousness”.

And of course, this is also remarkably sloppy logic:

  1. Consciousness has the 5-dimensional qualities of energy
  2. Consciousness can’t be spent.
  3. Consciousness can’t change form.
  4. Therefore consciousness is unlimited.

The first three statements are just blind assertions, given without evidence or argument. The fourth is presented as a conclusion drawn from the first three – but it’s a non-sequitur. There’s no real way to conclude the last statement given the first three. Even if you give him all the rope in the world, and accept those three statements as axioms – it’s still garbage.

The Intellectual Gravity of Brilliant Baseball Players

Some of my friends at work are baseball fans. I totally don’t get baseball – to me, it’s about as interesting as watching paint dry. But thankfully, some of my friends disagree, which is how I found this lovely little bit of crackpottery.

You see, there’s a (former?) baseball player named Jose Canseco, who’s been plastering twitter with his deep thoughts about science.

I may not be 100% right but think about it.How else could 30 foot leather birds fly?

— Jose Canseco (@JoseCanseco) February 19, 2013

At first glance, this is funny, but not particularly interesting. I mean, it's a classic example of my mantra: the worst math is no math.

The core of this argument is pseudo-mathematical. The dumbass wants to make the argument that under current gravity, it wouldn't be possible for things the size of the dinosaurs to move around. The problem with this argument is that there's no problem! Things the size of dinosaurs could move about in current gravity with absolutely no difficult. If you actually do the math, it's fine.

If dinosaurs had the anatomy of human beings, then it's true that if you scaled them up, they wouldn't be able to walk. But they didn't. They had anatomical structures that were quite different from ours in order to support their massive size. For example, here's a bone from quetzlcoatlus:

Media,111639,en See the massive knob sticking out to the left? That's a muscle attachement point. That gave the muscles much greater torque than ours have, which they needed. (Yes, I know that Quetzalcoatlus wwasn't really a dinosaur, but it is one of the kinds of animals that Canseco was talking about, and it was easy to find a really clear image.)

Most animal joints are, essentially, lever systems. Muscles attach to two different bones, which are connected by a hinge. The muscle attachement points stick out relative to the joint. When the muscles contract, that creates a torque which rotate the bones around the joint.

The lever is one of the most fundamental machines in the universe. It operates by the principal of torque. Our regular daily experiences show that levers act in a way that magnifies our efforts. I can't walk up to a car and lift it. But with a lever, I can. Muscle attachment points are levers. Take another look at that bone picture: what you're seeing is a massive level to magnify the efforts of the muscles. That's all that a large animal needed to be able to move around in earths gravity.

This isn't just speculation - this is stuff that's been modeled in great detail. And it's stuff that can be observed in modern day animals. Look at the skeleton of an elephant, and compare it to the skeleton of a dog. The gross structure is very similar - they are both quadripedal mammals. But if you look at the bones, the muscle attachment points in the elephants skeleton have much larger projections, to give the muscles greater torque. Likewise, compare the skeleton of an american robin with the skeleton of a mute swan: the swan (which has a maximum recorded wingspan of 8 feet!) has much larger projections on the attachment points for its muscles. If you just scaled a robin from its 12 inch wingspan to the 8 feet wingspan of a swan, it wouldn't be able to walk, much less fly! But the larger bird's anatomy is different in order to support its size - and it can and does fly with those 8 foot wings!

That means that on the basic argument for needing different gravity, Canseco fails miserably.

Canseco's argument for how gravity allegedly changed is even worse.

What he claims is that at the time when the continental land masses were joined together as the pangea supercontinent, the earths core moved to counterbalance the weight of the continents. Since the earths core was, after this shift, farther from the surface, the gravity at the surface would be smaller.

This is an amusingly ridiculous idea. It's even worse that Ted Holden and his reduced-felt-gravity because of the electromagnetic green saturn-star.

First, the earths core isn't some lump of stuff that can putter around. The earth is a solid ball of material. It's not like a ball of powdered chalk with a solid lump of uranium at the center. The core can't move.

Even if it could, Canseco is wrong. Canseco is playing with two different schemes of how gravity works. We can approximate the behavior of gravity on earth by assuming that the earth is a point: for most purposes, gravity behaves almost as if the entire mass of the earth was concentrated at the earths center of mass. Canseco is using this idea when he moves the "core" further from the surface. He's using the idea that the core (which surrounds the center of mass in the real world) is the center of mass. So if the core moves, and the center of mass moves with it, then the point-approximation of gravity will change because the distance from the center of mass has increased.

But: the reason that he claims the core moved is because it was responding to the combined landmasses on the surface clumping together as pangea. That argument is based on the idea that the core had to move to balance the continents. In that case, the center of gravity wouldn't be any different - if the core could move to counterbalance the continents, it would move just enough to keep the center of gravity where it was - so if you were using the point approximation of gravity, it would be unaffected by the shift.

He's combining incompatible assumptions. To justify moving the earths core, he's *not* using a point-model of gravity. He's assuming that the mass of the earths core and the mass of the continents are different. When he wants to talk about the effect of gravity of an animal on the surface, he wants to treat the full mass of the earth as a point source - and he wants that point source to be located at the core.

It doesn't work that way.

The thing that I find most interesting about this particular bit of crackpottery isn't really about this particular bit of crackpottery, but about the family of crackpottery that it belongs to.

People are fascinated by the giant creatures that used to live on the earth. Intuitively, because we don't see giant animals in the world around us, there's a natural tendency to ask "Why?". And being the pattern-seekers that we are, we intuitively believe that there must be a reason why the animals back then were huge, but the animals today aren't. It can't just be random chance. So people keep coming up with reasons. Like:

  1. Neal Adams: who argues that the earth is constantly growing larger, and that gravity is an illusion caused by that growth. One of the reasons, according to his "theory", for why we know that gravity is just an illusion, is because the dinosaurs supposedly couldn't walk in current gravity.
  2. Ted Holden and the Neo-Velikovskians: who argue that the solar system is drastically different today than it used to be. According to Holden, Saturn used to be a "hyperintelligent green electromagnetic start", and the earth used to be tide-locked in orbit around it. As a result, the felt effect of gravity was weaker.
  3. Stephen Hurrell, who argues similarly to Neal Adams that the earth is growing. Hurrell doesn't dispute the existence of gravity the way that Adams does, but similarly argues that dinosaurs couldn't walk in present day gravity, and resorts to an expanding earth to explain how gravity could have been weaker.
  4. Ramin Amir Mardfar: who claims that the earth's mass has been continually increasing because meteors add mass to the earth.
  5. Gunther Bildmeyer, who argues that gravity is really an electromagnetic effect, and so the known fluctuations in the earths magnetic fields change gravity. According to him, the dinosaurs could only exist because of the state of the magnetic field at the time, which reduced gravity.

There are many others. All of them grasping at straws, trying to explain something that doesn't need explaining, if only they'd bother to do the damned math, and see that all it takes is a relatively small anatomical change.

Euler's Equation Crackpottery

One of my twitter followers sent me an interesting piece of crackpottery. I debated whether to do anything with it. The thing about crackpottery is that it really needs to have some content. Total incoherence isn’t amusing. This bit is, frankly, right on the line.

Euler’s Equation and the Reality of Nature.

a) Euler’s Equation as a mathematical reality.

Euler’s identity is “the gold standard for mathematical beauty’.
Euler’s identity is “the most famous formula in all mathematics”.
‘ . . . this equation is the mathematical analogue of Leonardo
da Vinci’s Mona Lisa painting or Michelangelo’s statue of David’
‘It is God’s equation’, ‘our jewel ‘, ‘ It is a mathematical icon’.
. . . . etc.

b) Euler’s Equation as a physical reality.

“it is absolutely paradoxical; we cannot understand it,
and we don’t know what it means, . . . . .’
‘ Euler’s Equation reaches down into the very depths of existence’
‘ Is Euler’s Equation about fundamental matters?’
‘It would be nice to understand Euler’s Identity as a physical process
using physics.‘
‘ Is it possible to unite Euler’s Identity with physics, quantum physics ?’

My aim is to understand the reality of nature.

Can Euler’s equation explain me something about reality?

To give the answer to this. question I need to bind Euler’s equation with an object – particle. Can it be math- point or string- particle or triangle-particle? No, Euler’s formula has quantity (pi) which says me that the particle must be only a circle .

Now I want to understand the behavior of circle – particle and therefore I need to use spatial relativity and quantum theories. These two theories say me that the reason of circle – particle’s movement is its own inner impulse (h) or (h*=h/2pi).

a) Using its own inner impulse (h) circle – particle moves ( as a wheel) in a straight line with constant speed c = 1. We call such particle – ‘photon’. From Earth – gravity point of view this speed is maximally. From Vacuum point of view this speed is minimally. In this movement quantum of light behave as a corpuscular (no charge).

b) Using its own inner impulse / intrinsic angular momentum ( h* = h / 2pi ) circle – particle rotates around its axis. In such movement particle has charge, produce electric waves ( waves property of particle) and its speed ( frequency) is : c.

1. We call such particle – ‘ electron’ and its energy is: E=h*f.

In this way I can understand the reality of nature.

==.

Best wishes.

Israel Sadovnik Socratus.

Euler’s equation says that e^{ipi} + 1 = 0. It’s an amazingly profound equation. The way that it draws together fundamental concepts is beautiful and surprising.

But it’s not nearly as mysterious as our loonie-toon makes it out to be. The natural logarithm-base is deeply embedded in the structure of numbers, and we’ve known that, and we’ve known how it works for a long time. What Euler did was show the relationship between e and the fundamental rotation group of the complex numbers. There are a couple of ways of restating the definition of that make the meaning of that relationship clearer.

For example:

e^z = lim_{nrightarrow infty}(1 + frac{z}{n})^n

That’s an alternative definition of what e is. If we use that, and we plug ipi into it, we get:

e^{ipi} = lim_{n rightarrow infty}(1+frac{ipi}{n})^n

If you work out that limit, it’s -1. Also, if you take values of N, and plot (1 + frac{ipi}{n})^1, (1+frac{ipi}{n})^2, (1 + frac{ipi}{n})^3, and (1 + frac{ipi}{n})^4, … on the complex plane, as N gets larger, the resulting curve gets closer and closer to a semicircle.

An equivalent way of seeing it is that exponents of e^i are rotations in the complex number plane. The reason that e^{ipi} = -1 is because if you take the complex number (1 + 0i), and rotate it by pi radians, you get -1: 1(e^{ipi}) = -1.

That’s what Euler’s equation means. It’s amazing and beautiful, but it’s not all that difficult to understand. It’s not mysterious in the sense that our crackpot friend thinks it is.

But what really sets me off is the idea that it must have some meaning in physics. That’s silly. It doesn’t matter what the physical laws of the universe are: the values of pi and e will not change. It’s like trying to say that there must be something special about our universe that makes 1 + 1 = 2 – or, conversely, that the fact that 1+1=2 means something special about the universe we live in. These things are facts of numbers, which are independent of physical reality. Create a universe with different values for all of the fundamental constants – e and π will be exactly the same. Create a universe with less matter – e and π will still be the same. Create a universe with no matter, a universe with different kinds of matter, a universe with 300 forces instead of the four that we see – and e and π won’t change.

What things like e and π, and their relationship via Euler’s equation tell us is that there’s a fundamental relationship between numbers and shapes on a two-dimensional plane which does not and cannot really exist in the world we live in.

Beyond that, what he’s saying is utter rubbish. For example:

These two theories say me that the reason of circle – particle’s movement is its own inner impulse (h) or (h*=h/2pi). Using its own inner impulse (h) circle – particle moves ( as a wheel) in a straight line with constant speed c = 1. We call such particle – ‘photon’. From Earth – gravity point of view this speed is maximally. From Vacuum point of view this speed is minimally. In this movement quantum of light behave as a corpuscular (no charge).

This is utterly meaningless. It’s a jumble of words that pretends to be meaningful and mathematical, when in fact it’s just a string of syllables strung together nonsensical ways.

There’s a lot that we know about how photons behave. There’s also a lot that we don’t know about photons. This word salad tells us exactly nothing about photons. In the classic phrase, it’s not even wrong: what it says doesn’t have enough meaning to be wrong. What is the “inner impulse” of a photon according to this crackpot? We can’t know: the term isn’t defined. We are pretty certain that a photon is not a wheel rolling along. Is that what the crank is saying? We can’t be sure. And that’s the problem with this kind of crankery.

As I always say: the very worst math is no math. This is a perfect example. He starts with a beautiful mathematical fact. He uses it to jump to a completely non-mathematical conclusion. But he writes a couple of mathematical symbols, to pretend that he’s using math.