I’m going to do some writing about discrete probability theory. Probability is an extremely important area of math. We encounter aspects of it every day. It’s also a very poorly understood area – it’s one that we see abused or just fouled up every day.
I’m going to focus on discrete probability theory. What that means is that we’re going to look at things where the space containing the things that we’re going to look at contains a countable number of elements. The probability of getting a certain sequence of coin flips, or of getting a certain hand of cards are described by discrete probability theory. On the other hand, the odds of a radioactive isotope decaying at a particular time requires continuous probability theory.
Before getting into the details, there’s one important thing to mention. When you’re talking about probability, there are two fundamental schools of interpretetation. There are frequentist interpretations, and there are Bayesian interpretations.
In a frequentist interpretation, when you say the probability of an event is 0.6, what you mean is that if you were to perform a series of experiments precisely reproducing the event, then on average, if you did 100 experiments, the event would occur 60 times. In the frequentist interpretation, the probability is an intrinsic property of the event. For a frequentist, it makes sense to say that there is a “real” probability associated with an event.
In a Bayesian interpretation, when you say that the probability of an event is 0.6, what you mean is that based on your current state of knowledge about the event, you have a 60% certainty that the event will occur. In a strict Bayesian interpretation, the event doesn’t have any kind of intrinsic probability associated with it. The specific event that you’re interested in either will occur, or it won’t. There’s no real probability involved. What probability measures is how certain you are about whether or not it will occur.
For example, think about flipping a fair coin.
A frequentist would say that you can flip a coin many times, and half of the time, it will land on heads. So the probability of a coin flip landing on the head of the coin is 0.5. A Bayesian would say that the coin will land either on heads or on tails. Since you don’t know which, and you have no other information to use to be able to make a better prediction, you can have a certainty of 0.5 that it will land on the head of the coin.
In the real world, I think that most people are really somewhere in between.
I think that all but the most fervent Bayesians do rely on an intuitive notion of the “intrinsic” probability of an event. They may describe it in different terms, but when it comes down to it, they’re using the basic frequentist notion. And I don’t think that you can find a sane frequentist anywhere who won’t use Bayes theorem to update their priors in the face of new information – which is the most fundamental notion in the Bayesian interpretation.
One note before I finish this, and get started on the real meaty posts. In the past, when I’ve talked about probability, people have started stupid flamewars in the comments. People get downright religious about interpretations of probability. There are religious Bayesians, who think that all frequentists are stupid idiots who should be banished from the field of math; likewise, there are religious frequentists who think that Bayesians are all a crop of arrogant know-it-alls who should be sent to Siberia. I am not going to tolerate any of that nonsense. If you feel that you cannot read posts on probability without going into a diatribe about those stupid frequentists/Bayesians and their deliberately stupid ideas, please go away and don’t even read these posts. If you do go into such a diatribe, I will delete your comments without any hesitation.
A fun game to play with cranks is: how long does it take for the crank to contradict themselves?
When you’re looking at a good example of crankery, it’s full of errors. But for this game, it’s not enough to just find an error. What we want is for them to say something so wrong that one sentence just totally tears them down and demonstrates that what they’re doing makes no sense.
“The color of a clear sky is green” is, most of the time, wrong. If a crank makes some kind of argument based on the alleged fact that the color of a clear daytime sky is green, the argument is wrong. But as a statement, it’s not nonsensical. It’ just wrong.
On th other hand, “The color of a clear sky is steak frite with bernaise sauce and a nice side of roasted asparagus”, well… it’s not even wrong. It’s just nonsense.
Today’s crank is a great example of this. If, that is, it’s legit. I’m not sure that this guy is serious. I think this might be someone playing games, pretending to be a crank. But even if it is, it’s still fun.
About a week ago, I got en mail titled “I am a Cantor crank” from a guy named Chris Cuellar. The contents were:
…AND I CHALLENGE YOU TO A DUEL!! En garde!
Haha, ok, not exactly. But you really seem to be interested in this stuff. And so am I. But I think I’ve nailed Cantor for good this time. Not only have I come up with algorithms to count some of these “uncountable” things, but I have also addressed the proofs directly. The diagonalization argument ends up failing spectacularly, and I believe I have a good explanation for why the whole thing ends up being invalid in the first place.
And then I also get to the power set of natural numbers… I really hope my arguments can be followed. The thing I have to emphasize is that I am working on a different system that does NOT roll up cardinality and countability into one thing! As it will turn out, rational numbers are bigger than integers, integers are bigger than natural numbers… but they are ALL countable, nonetheless!
Anyway, I had started a little blog of my own a while ago on these subjects. The first post is here:
http://laymanmath.blogspot.com/2012/09/the-purpose-and-my-introduction.html
Have fun… BWAHAHAHA
So. We’ve got one paragraph of intro. And then everything crashes and burns in an instant.
“Rational numbers are bigger than integers, integers are bigger than natural numbers, but they are all countable”. This is self-evident rubbish. The definition of “countable” say that an infinite set I is countable if, and only if, you can create a one-to-one mapping between the members of I and the natural numbers. The definition of cardinality says that if you can create a one-to-one mapping between two sets, the sets are the same size.
When Mr. Cuellar says that the set of rational numbers is bigger that the set of natural numbers, but that they are still countable… he’s saying that there is not a one-to-one mapping between the two sets, but that there is a one-to-one mapping between the two sets.
Look – you don’t get to redefine terms, and then pretend that your redefined terms mean the same thing as the original terms.
If you claim to be refuting Cantor’s proof that the cardinality of the real numbers is bigger than the cardinality of the natural numbers, then you have to use Cantor’s definition of cardinality.
You can change the definition of the size of a set – or, more precisely, you can propose an alternative metric for how to compare the sizes of sets. But any conclusions that you draw about your new metric are conclusions about your new metric – they’re not conclusions about Cantor’s cardinality. You can define a new notion of set size in which all infinite sets are the same size. It’s entirely possible to do that, and to do that in a consistent way. But it will say nothing about Cantor’s cardinality. Cantor’s proof will still work.
What my correspondant is doing is, basically, what I did above in saying that the color of the sky is steak frites. I’m using terms in a completely inconsistent meaningless way. Steak frites with bernaise sauce isn’t a color. And what Mr. Cuellar does is similar: he’s using the word “cardinality”, but whatever he means by it, it’s not what Cantor meant, and it’s not what Cantor’s proof meant. You can draw whatever conclusions you want from your new definition, but it has no bearing on whether or not Cantor is correct. I don’t even need to visit his site: he’s demonstrated, in record time, that he has no idea what he’s doing.
Imagine, for just a moment, that you were one a group of scientists that had proven the most important, the most profound, the most utterly amazing scientific discovery of all time. Where would you publish it?
Maybe Nature? Science? Or maybe you’d prefer to go open-access, and go with PLOS ONE? Or more mainstream, and send a press release to the NYT?
Well, in the case of today’s crackpots, they bypassed all of those boring journals. They couldn’t be bothered with a pompous rag like the Times. No, they went for the really serious press: America Now with Leeza Gibbons.
What did they go to this amazing media outlet to announce? The most amazing scientific discovery of all time: gravity is an illusion! There’s no gravity. In fact, not just is there no gravity, but all of that quantum physics stuff? It’s utter rubbish. You don’t need any of that complicated stuff! No – you need only one thing: the solar wind.
A new theory on the forces that control planetary orbit refutes the 400-year old assumptions currently held by the scientific community. Scientific and engineering experts Gerhard and Kevin Neumaier have established a relationship between solar winds and a quantized order in both the position and velocity of the solar system’s planets, and movement at an atomic level, with both governed by the same set of physics.
The observations made bring into question the Big Bang Theory, the concept of black holes, gravitational waves and gravitons. The Neumaiers’ paper, More Than Gravity, is available for review at MoreThanGravity.com
Pretty damned impressive, huh? So let’s follow their instructions, and go over to their website.
Ever since humankind discovered that the Earth and the planets revolved around the Sun, there was a question about what force was responsible for this. Since the days of Newton, science has held onto the notion that an invisible force, which we have never been able to detect, controls planetary motion. There are complicated theories about black holes that have never been seen, densities of planets that have never been measured, and subatomic particles that have never been detected.
However, it is simpler than all of that and right in front of us. The Sun and the solar wind are the most powerful forces in our solar system. They are physically moving the planets. In fact, the solar wind spins outward in a spiral at over a million miles per hour that controls the velocity and distances that planets revolve around the Sun. The Sun via the solar wind quantizes the orbits of the planets – their position and speed.
The solar wind also leads to the natural log and other phenomenon from the very large scale down to the atomic level. This is clearly a different idea than the current view that has been held for over 400 years. We have been working on this for close 50 years and thanks to satellite explorations of space have data that just was not available when theories long ago were developed. We think that we have many of the pieces but there are certainly many more to be found. We set this up as a web site, rather as some authoritative book so that there would be plenty of opportunity for dialog. The name for this web site, www.MorethanGravity.com was chosen because we believe there is far more to this subject than is commonly understood. Whether you are a scientific expert in your field or just have a general interest in how our solar system works, we appreciate your comments.
See, it’s all about the solar wind. There’s no such thing as gravity – that’s just nonsense. The sun produces the solar wind, which does absolutely everything. The wind comes out of the sun, and spirals out from the sun. That spiral motion has eddies in it an quantized intervals, and that’s where the planets are. Amazing, huh?
Remember my mantra: the worst math is no math. This is a beautiful demonstration
of that.
Of course… why does the solar wind move in a spiral? Everything we know says that in the absence of a force, things move in a straight line. It can’t be spiraling because of gravity, because there is no gravity. So why does it spiral? Our brilliant authors don’t bother to say. What makes it spiral, instead of just move straight? Mathematically, spiral motion is very complicated. It requires a centripetal force which is smaller than the force that would produce an orbit. Where’s that force in this framework? There isn’t any. They just say that that’s how the solar wind works, period. There are many possible spirals, with different radial velocities – which one does the solar wind follow according to this, and why? Again, no answer from the authors.
Or… why is the sun producing the solar wind at all? According to those old, stupid theories that this work of brilliance supercedes, the sun produces a solar wind because it’s fusing hydrogen atoms into helium. That’s happening because gravity is causing the atoms of the sun to be compressed together until they fuse. Without gravity, why is fusion happening at all? And given that it’s happening, why does the sun not just explode into a supernova? We know, from direct observation, that the energy produced by fusion creates an outward force. But gravity can’t be holding the sun together – so why is the sun there at all? Still, no answers.
They do, eventually, do some math. One of the big “results” of this hypothesis is about the “quantization” of the orbits of planets around the sun. They were able to develop a simple equation which predicts the locations where planets could exist in their “solar wind” system.
Let’s start with the distance between the planets and the Sun. We guessed that if the solar system was like an atom, that planetary distance would be quantized. This is to say that we thought that the planets would have definite positions and that they would be either in the position or it would be empty. In a mathematical sense, this would be represented by a numerical integer ordering (0,1,2,3,…). If the first planet, Mercury was in the 0 orbital, how would the rest of the planets line up? Amazingly well we found.
If we predict the distance from the surface of the Sun to each planet in this quantized approach, the results are astounding. If D equals the mean distance to the surface of the Sun, and d0 as the distance to Mercury, we can describe the relationship that orders the planets mathematically as:
Each planetary position can be predicted from this equation in a simple calculation as we increase the integer (or planet number) n. S is the solar factor, which equals 1.387. The solar factor is found in the differential rotation of the Sun and the profile of the solar wind which we will discuss later.
Similar to the quantized orbits that exist within an atom, the planetary bodies are either there or not. Mercury is in the zero orbital. The next orbital is missing a planet. The second, third, and fourth orbitals are occupied by Venus, Earth, and Mars respectively. The fifth orbital is missing. The sixth orbital is filled with Ceres. Ceres is described as either the largest of all asteroids or a minor planet (with a diameter a little less than half that of Pluto), depending on who describes it. Ceres was discovered in 1801 as astronomers searched for the missing planets that the Titius-Bode Law predicted would exist.
So. What they found was an exponential equation which products very approximate versions of the size of first 8 planets’ orbits, as well as a couple of missing ones.
This is, in its way, interesting. Not because they found anything, but rather because they think that this is somehow profound.
We’ve got 8 data points (or 9, counting the asteroid belt). More precisely, we have 9 ranges, because all of the orbits are elliptical,but the authors of this junk are producing a single number for the size of the orbits, and they can declare success if their number falls anywherewithin the range from perihelion to aphelion in each of the orbits.
It would be shocking if there weren’t any number of simple equations that described exactly the 9 data points of the planet’s orbits.
But they couldn’t even make that work directly. They only manage to get a partial hit – getting an equation that hits the right points, but which also generates a bunch of misses. There’s nothing remotely impressive about that.
From there, they move on to the strawmen. For example, they claim that their “solar wind” hypothesis explains why the planets all orbit in the same direction on the same plane. According to them, if orbits were really gravitational, then planets would orbit in random directions on random planes around the sun. But their theory is better than gravity, because it says why the planets are in the same plane, and why they’re all orbiting in the same direction.
The thing is, this is a really stupid argument. Why are the planets in the same plane, orbiting in the same direction? Because the solar system was formed out of a rotating gas cloud. There’s a really good, solid, well-supported explanation of why the planets exist, and why they orbit the sun the way they do. Gravity doesn’t explain all of it, but gravity is a key piece of it.
What they don’t seem to understand is how amazingly powerful the theory of gravity is as a predictive tool. We’ve sent probes to the outer edges of the solar system. To do that, we didn’t just aim a rocket towards Jupiter and fire it off. We’ve done things like the Cassini probe, where we launched a rocket towards Venus. It used the gravitational field of Venus twice to accelerate it with a double-slingshot maneuver, and send it back towards earth, using the earth’s gravity to slingshot it again, to give it the speed it needed to get to Jupiter.
This wasn’t a simple thing to do. It required an extremely deep understanding of gravity, with extremely accurate predictions of exactly how gravity behaves.
How do our brilliant authors answer this? By handwaving. The extend of their response is:
Gravitational theory works for things like space travel because it empirically measures the force of a planet, rather than predicting it.
That’s a pathetic handwave, and it’s not even close to true. The gravitational slingshot is a perfect answer to it. A slingshot doesn’t just use some “empirically measured” force of a planet. It’s a very precise prediction of what the forces will be at different distances, how that force will vary, and what effects that force will have.
They do a whole lot more handwaving of very much the same order. Pure rubbish.